
PMX – a Preprocessor for MusiXTEX

Version 2.80 – 5 March 2017

Don Simons
Dr. Don’s PC and Harpsichord Emporium

Redondo Beach, California, USA.

Preface

Compared to version 2.76, PMX version 2.80 has increases in the maximum numbers of bytes in
an input file, input blocks, and pages; a change in the assignment of postscript hairpin indices to
reduce the chance of exceeding some musixps.tex limitation; a new option T in an xtuplet to set
up a 2-note tremolo; a new option T on any unbeamed note to insert a single note tremolo symbol
with 1, 2, or 3 slashes; a new option AV to add extra vertical space before and/or after every page
eject; and an automatic reduction in end-of-page space when Ae is in effect and there are more
than 8 staves per page.

Contents

1 Introduction 4
1.1 Conventions for This Manual . 4
1.2 Setup . 5
1.3 Basic Operation, by Example . 5

2 Elements of PMX 5
2.1 Setup Data in the Input File . 5
2.2 Structure of the Body of the Input File . 7

2.2.1 Notes . 8
2.2.2 2-note tremolos . 10
2.2.3 Rests . 11
2.2.4 Chords . 12
2.2.5 Grace notes . 13
2.2.6 Ornaments . 13
2.2.7 Editorial accidentals . 14
2.2.8 Slurs . 14
2.2.9 Ties . 16
2.2.10 Line-breaking Type K slurs and ties . 16
2.2.11 Dynamics . 16
2.2.12 Beams . 17
2.2.13 Clefs . 18
2.2.14 Arpeggios . 18

1

2

2.2.15 Lyrics . 18
2.3 Commands That Affect All Voices . 20

2.3.1 Repeats, double bars, forced single bars . 20
2.3.2 Voltas (first and second endings) . 20
2.3.3 Meter changes . 20
2.3.4 Fundamentals of key changes and transposition 21
2.3.5 More on transposition; “transposing” instruments and example files 21
2.3.6 Text . 23
2.3.7 Page numbering, centered header text . 24
2.3.8 Overriding certain defaults, or getting the most from PMX 24
2.3.9 Extra hardspace, horizontal shifts . 26
2.3.10 Minimum spacing between notes in crowded systems 27
2.3.11 Page size . 27
2.3.12 Line, page, and movement breaks . 27
2.3.13 Fractional bars . 27
2.3.14 Stem direction of bass notes . 28

2.4 Putting TEX Commands into the PMX File . 28
2.5 Figured Bass . 28
2.6 Macros . 29
2.7 Include Files . 29
2.8 Batch Processing . 30

3 Making Parts from a Score 30

4 Making MIDI Files 32

5 Limits 33
5.1 Limits on quantities that a user can control . 33
5.2 Limits not under immediate user control . 34

6 Closing Notes 34
6.1 About the Example Files . 34
6.2 A Benign Bug . 35
6.3 Where to Get Help . 35
6.4 Acknowledgments . 35

3

Dedication
The MusiXTEX community was stunned

by the sudden death of Werner Icking on
February 8, 2001. He had been a benevolent
patriarch, touching many of us not only with
his technical savvy and gentle guidance, but
also his genuine kindness and generosity. His
spirit runs deep through all of PMX . His
encouragement fueled its development from
its very beginning. Many enhancements have
been his proposals, including one he made on
what turned out to be his last day. Werner,
my friend, I dedicate this work to you and
your memory.

1 INTRODUCTION 4

1 Introduction

PMX is a preprocessor for MusiXTEX. Before using it you should have installed
MusiXTEX Version 1.21 or higher, and any available version of TEX that includes e-TEX. The 2.71
goal of PMX is to facilitate the efficient typesetting of scores and parts that have an almost
professional appearance. It can do all the work involved in setting up \notes-\enotes groupings,
selecting groups of notes to be beamed, defining beam heights and slopes, spreading the entire
piece evenly over specified numbers of systems and pages, and inserting extra spaces where
needed to make room for accidentals, flags, dots, and new clefs. The input language for PMX is
much simpler than MusiXTEX. You can enter note values and rests from 64ths to double whole
notes (breves), ornaments, slurs, and limited text strings. Every voice in every bar must have
exactly the correct number of beats in the current meter, but you may change the meter at the
beginning of any measure, with or without printing the new time signature. Before making a TEX
file, PMX checks these timings and other aspects of the input. PMX has special features for
dealing with baroque chamber music, including the ability to notate figured bass below the
bottom staff in each system. If PMX hasn’t yet learned to do something you want to do, you can
usually work around the problem by inserting literal TEX strings in the PMX input file.

You can automatically create parts from a score using scor2prt. This auxiliary program
generates a set of .pmx input files, one for each part, from a single .pmx file for the score. You can
control the appearance of the parts with special commands in the main file, thereby making it
possible to include within a single input file all the information that defines the score and the
individual parts.

The basic PMX distribution as of this version of the manual is pmx276.zip. It contains the 2.76
FORTRAN sources, binaries that will run in a DOS window on a PC with WINDOWS95 or
higher, manuals for useage and for installation in DOS/Windows, and example typesetting files.
Alternatively, the software section of the Werner Icking Music Archive (WIMA) has instructions
for acquiring and installing MusiXTEX and PMX on various platforms (Windows, Mac-OSX,
Unix-like systems) including using automated procedures from several external TEX distribution
sites. The packages from those other sites will all eventually incorporate all the upgrades in
pmx276.zip but will take varying amounts of time to do so. PMX is often upgraded; the most
current version will always be available directly from the “News” paragraph here.

1.1 Conventions for This Manual

Hey, this is boring stuff, but if you take a minute to understand the typographic conventions and
a little jargon, it may avoid some confusion down the road.

The typewriter typeface always indicates verbatim text as it would be input to a computer.
This includes file names, MusiXTEX tokens, and PMX commands, e.g., barsant.pmx,
\internote, c44.

Bold is used for program names (e.g., pmxab), or when applied to a single letter, to relate a
PMX command to its meaning (e.g., “e signifies a left shift”).

When viewing the PDF version of this document on a computer screen, clickable internal
hyperlinks are colored blue, and clickable external links are underlined and colored cyan.

Italics may mean several different things depending on the context: simple emphasis, or the
first appearance of jargon (buzz-words that need to be explicitly defined), or finally to represent
input variables for which some verbatim text would need to be substituted. In the latter case the
variable will be surrounded by square brackets, e.g., [basename], but the brackets are not to be
included with the substituted text.

Speaking of jargon, there are several special words that have very specific meanings here: A
staff is one set of 5 lines (plural staves), a system is a group of staves, and voice refers to one of

http://icking-music-archive.org/software/pmx/pmx276.zip
http://www.icking-music-archive.org/software/htdocs/Getting_Started_Four_Scenar.html
http://www.icking-music-archive.org/software/htdocs/htdocs.html

2 ELEMENTS OF PMX 5

the one or two simultaneous allowable sequences of notes in a staff. Note that this is a change
from versions prior to 2.5, where voice was used interchangeably with staff.

A PMX command is a string of characters with no spaces between them. The first character
determines the type of command. Any other characters are parameters that may be either
required or optional. Sometimes we loosely use the word command to refer just to the initial
character.

1.2 Setup

Here we briefly describe the setup for the Windows OS, assuming TEX and MusiXTEX have
already been installed. After compiling the FORTRAN source code, users of other OS’s may
either adapt these instructions as needed or use one of the other setup methods referenced earlier.

After decompressing the distribution file pmx276.zip, you should have these files:
pmx276.for, scor2prt.for, two Windows executables pmxab.exe and scor2prt.exe, several 2.76
sample .pmx files, pmx.tex, ref276.tex (TEX source for a command summary), pmx276.tex
(TEX source for this file), PDF images of the latter two files, pmx25-276.html showing changes
from version 2.50 to 2.76, and install run PMX271.pdf which gives more details about installing
and running on different platforms.

Once you have assembled a full set of files, put the executables somewhere in the path or in
your working directory, pmx.tex into the texinput directory, the sample *.pmx files in your
working directory (the one from which you will run PMX), and the source code and document
files wherevever you wish.

1.3 Basic Operation, by Example

Edit the 15th line of barsant.pmx to contain the path to the directory where you want PMX to
write the .tex file. For example, if you want this to be the same as the working directory, type
.\ for Windows, or ./ for UNIX.

If you haven’t done so, open a command window and navigate to the folder containing
barsant.pmx. Execute PMX by typing pmxab barsant . Alternatively, you may just type pmxab
<return> and you will be prompted for a jobname, which in this case is just barsant . pmxab
will always generate two files in the working directory: barsant.pml is a log file, and
pmxaerr.dat contains a single integer, 0 if the run was successful, otherwise the line number in
the .pmx file of the fatal error (useful for batch processing). Also, on successful completion,
barsant.tex will be placed in the path specified in the setup.

Now you are right where you would be after entering, debugging, and rough-editing the .tex
file manually. To see the results, process barsant.tex just as you would for any MusiXTEX file,
running all three passes, and view the .dvi file, or go on and run dvips to create a postscript file
and view that with a postscript viewer such as GSview. To make separate parts, run scor2prt by
typing scor2prt barsant . The program will create a new .pmx file for each instrument, in this
case barsant1.pmx and barsant2.pmx. You may then process these files like you did the original
one to create separate parts.

2 Elements of PMX

2.1 Setup Data in the Input File

To see how the input file is put together, we’ll look at barsant.pmx. For reference, here are are
the first few lines:

%----------------%

2 ELEMENTS OF PMX 6

%

% barsant.pmx Revised 29 June 2002

%

%----------------%

%

% nv,noinst,mtrnuml,mtrdenl,mtrnmp,mtrdnp,xmtrnum0,isig,

2 2 4 4 0 6 0 0

%

% npages,nsyst,musicsize,fracindent

1 7 20 0.07

Basso

Recorder

bt

./

The lines with % in column 1 are comments. Some special handling of comment lines will be
discussed in the section on creating parts from a score in section 3.

The rest of the lines in this example are the setup data. Starting in the first non-comment
line above,

nv (integer≤24) is the total number of staves per system. Each staff may contain either one 2.6
or two voices, but the total number of voices at any one time may not exceed 24.

noinst (integer≤nv) is number of instruments. Each instrument has a unique name (see
below), and any instrument with more than one staff will have its staves joined with a curly
bracket. Usually there is only one staff per instrument and noinst=nv. There are two ways to
assign more than one staff to one or more instruments. If only the first (lowest) instrument has
more than one staff, such as in a score for piano and a solo instrument, simply make noinst<nv
and any difference will show up in instrument 1, the bottom one in each system. For a more
general distribution of staves among instruments, put a minus sign in front of noinst, and follow
noinst with the number of staves in each instrument in succession, separated by spaces. These
numbers must add up to nv or your computer will explode. For a typical example of keyboard
music, see mwalmnd.pmx, in which nv=2 and noinst=1, producing two staves per system with a
curly bracket at the left.

The number of instruments can be changed as well after the start of the score, but only to a
number less than the original one. See section 2.3.12 to learn how to start with a smaller number
of instruments and later increase it.

mtrnuml is the logical numerator of the meter, or the number of beats per measure; mtrdenl
the denominator. Please note the special considerations in the paragraph after the next. If
mtrnuml is divisible by 2 or 3, beam grouping will be automatic; otherwise you will have to force
all beams using [. . .] as described in section 2.2.12.

mtrnmp and mtrdnp are the printed numerator and denominator. These determine the
appearance of the meter in the printed output but have no effect on the internal timing analysis.
If mtrnmp>0 then it and mtrdnp are printed literally as the numerator and denominator of the
time signature. Please note the special considerations in the following paragraph. If mtrnmp<0,
then the numerator is abs(mtrnmp) and the entire time signature will be printed with a vertical
slash through it. If mtrnmp=0, then mtrdnp determines the printed meter as follows:

0 No meter is printed (blind meter change)
1, 2, 3, or 4 A single digit, between the 2nd and 4th lines
5 Cut time (alla breve)
6 Common time
7 Numeral 3 with a vertical slash

2 ELEMENTS OF PMX 7

There are special considerations for n/16 and n/1 time signatures (where the latter ”1”
normally means a whole note). To get n/1 time, use 0 (zero) for mtrdenl and 1 for mtrdnp. To
remember this rule, recall that the printed denominator is taken literally, while the logical
denominator can always be represented by the same single digit used for the corresponding time
value when entering ordinary notes (see section 2.2.1). So for n/16 time, use 1 for mtrdenl and 16

for mtrdnp.
If the first bar is a partial bar containing a pickup, xmtrnum0 is the number of beats in it;

otherwise set it to 0. It need not be an integer. The first bar is the only bar that can have a
different number of beats than the current value of mtrnuml (Later we’ll see how to change the
meter).

isig is the key signature, positive integer for sharps, negative for flats.
If npages>0, it is the number of pages and nsyst is the total number of systems in the

entire piece. PMX will spread the entire piece horizontally over this number of systems, and
vertically over npages pages. For proper vertical spacing there should be from about 9 to 16
staves per page. If you specify too many staves for the number of pages, one or more staves may
spill over onto an extra sheet. If this happens it will only become obvious when you preview the
.dvi file. One solution is to use the global option Ae (see section 2.3.8); another is to increase
npages or decrease nsyst.

If npages is set to 0, then nsyst is interpreted as the average number of measures per
system. This is useful while building up a file a little at a time. PMX will calculate how many
systems to use, and spread them over an appropriate number of pages.

musicsize is 16, 20, 24, or 29, the height of a staff in points, with 20 considered the default. 2.6
fracindent is the indentation of the first system from the left margin, expressed as a

decimal fraction of the total line width.
Next come the names of the noinst instruments as you want them to appear within the

indentation in the first system, one per line, starting with the bottom instrument. If you’ve set
fracindent=0 and don’t want instrument names to appear, you must still leave noinst blank
lines here. Next comes a single string of nv letters or numbers for the clefs, again starting with
the bottom staff: b, r, n, a, m, s, t, f, 8 or digits 0-8 respectively for bass, baritone, 2.71
tenor, alto, mezzo-soprano, soprano, treble, French violin clef, or octave treble clef. The last line
of setup data contains the path to the directory where you want the tex file to go when
PMX creates it. The one in barsant.pmx , ./ , represents the current directory in UNIX and
some versions of DOS. The path must terminate with / or \ .

2.2 Structure of the Body of the Input File

The rest of the .pmx file is the body of the input. The basic unit of input from here on is called an
input block or just block, each one representing an integral number of bars. If there is a pickup bar
defined by xmtrnum0 > 0, it must be included in the first block together with at least one full bar.
If you wish to put a pickup in a separate block, for example at the start of a new movement, set
the initial logical meter to fit the pickup bar, then after the pickup bar do a blind meter change as
described in section 2.3.3).

There will usually be 4 to 8 bars in a block. 15 is the most allowed. It is good practice to
separate the blocks with comment lines that state which bars are represented, as I’ve done in
barsant.pmx. It is also advisable, although not required, to separate the bars with the command
|. Its main functions are to provide visual separation in the input file, and to help isolate input
errors: if you put one anywhere except at a bar-end, pmxab will stop and show you where it
detected the timing error. Otherwise, with several minor exceptions, | has no effect.

At the start of each block there may be a few special commands (described starting in
section 2.3). Next come the input data for the selected number of bars of the first (lowest in the
system) voice in the first staff, followed by either / to move to the next staff, or // to move to the

2 ELEMENTS OF PMX 8

next voice on the same staff. Each new voice must start on a new line in the input file, i.e., there
should be no further data on the same input line after / or // . Continue entering other voices,
each with exactly the same number of bars as the first, terminated by / or //, until the last
(topmost in the system) ends with a / and the block is finished. Within a block every voice must
have the same number of bars, but every block needn’t have the same number of bars as other
blocks. The number of voices in a staff can only be 1 or 2, and cannot change within a block, but
may vary from block to block.

The data for each voice in each staff are a sequence of commands containing one or more
adjacent characters. Commands are separated from each other by spaces. The line-terminating
commands / and // should also naturally be preceded by a space.

2.2.1 Notes

Commands for notes always start with a lower-case letter and, as with all commands, end at the
first space. The first letter is the note name (a-g). The rest of the characters can be in any order
with only a few restrictions. The first digit defines the basic time value of the note: 9, 0, 2, 4,

8, 1, 3 or 6 respectively for double-whole, whole, half, quarter, eighth, sixteenth, thirty-second,
and sixty-fourth notes. The second digit sets the octave (for reference, octave 4 runs from middle
C to the B above). Certain letters may appear after the initial one: d for dot; dd for double dot;
f, n, or s for flat, natural, or sharp (repeat the letter immediately for a double); u or l, which
force the stem direction of any un-beamed note; e or r to shift the notehead left or right by its
own width; a (for alone) which inhibits beaming for this note (or, if the first note of an xtuplet,
for the entire xtuplet); and T to insert a tremolo on the stem. The T may be followed by a single 2.80
digit 1, 2, or 3 to indicate the number of slashes in the tremolo symbol; 1 is the default if no digit
is entered. A single accidental may be immediately followed by c to make it cautionary, i.e.,
surround it with parentheses. Alternatively, it may also be followed by i to suppress typesetting
but still have the MIDI processor honor the accidental. Other characters allowed in note
commands are +, -, .(period), ,(comma), x, and several special characters following x, all to be
described below. Between the first letter and the end or x if present, non-digits can be in any
order with respect to each other and to the digits, with minor exceptions involving shifting dots
and accidentals.

To move a dot from its default location, simply follow the d with one or two decimal
numbers, each predeced by + or -. The first is the vertical shift in \internotes, the second, the
horizontal shift in notehead widths.

Accidentals can be shifted too. One way is to enter + or - right after the accidental
character, then an integer for the vertical shift, then another + or - followed by the horizontal
shift in notehead widths. If you use this method, you must enter both numbers. Or, to just shift
horizontally, use < or > followed by the shift in notehead widths. When shifting a sharp to avoid
another sharp, a left shift of 0.85 is usually best. When shifting a flat to avoid a flat above it, a
left shift of 0.3 is suggested. In chords (see section 2.2.4), if all the notes are in the same voice,
PMX will automatically shift accidentals if required. This will be disabled for the current chord
if any user-defined accidental shifts are entered, unless A is entered along with the shift, e.g.,
zcsA<.5 . In that case the user-defined shift will be added to the PMX-computed one. Another
option that affects accidental positioning in chords is Ao, entered in the main note command of a
chord. It will force the accidentals in that chord will be posted in the order they come in the
source file (starting with the main note), each one as far to the right as it will go without crashing
into a notehead, stem, or another accidental.

Dots and accidentals always have to be entered when and if a note calls for them. i.e., they
are never carried over from previous notes. On the other hand, the octave only needs to be
entered if the note is more than a fourth away from the most recent note in the same voice. This
feature lets you go for long stretches in a voice before needing to enter the octave. An alternate

2 ELEMENTS OF PMX 9

way to jump more than a fourth but less than a twelfth is to type + or -. In other words, these
mean to put the note an octave higher or lower than it otherwise would have gone. Two +’s will
raise the pitch two octaves above what it otherwise would have been, and so forth. The basic time
value is also carried over from the past if it is not re-entered, except for the first note or rest in
each voice in an input block, for which it must be entered. Therefore, when the melody jumps
more than a 4th, using + or - is often more convenient than using a digit. This is because in order
to use the digit, you must first enter the basic time value whether it changes or not.

For example c44 d e f g a b c c0- is an ascending quarter-note scale starting on middle
C, followed by an octave jump down to a whole note middle C.

Explicit octave numbers can be combined with one or more + or - . In earlier versions, + or
- was ignored if an octave number was specified. This is a slight backward incompatibility;
PMX prints a warning when it happens.

Stem length can be shortened or lengthened by x \internote with the options Sx or Lx . x 2.73
is restricted to the range (0.5,4.0) for shortening and 0.5 to 27.5 for lengthening. The shortening
can be made “sticky” by following the number x with : . Then every note’s stem in the voice will
be shortened until one is encountered with the option S: . By lengthening a stem enough to span
to the next staff and connect with notes there, unflagged staff-spanning chords can be
constructed. See section 2.2.4 for further details about staff-spanning chords.

The first note command in each voice in a block must contain at a minimum the note name
or r for a rest (see below), and a basic time value. For notes, it is good practice and can simplify
editing if in addition an explicit octave is set here. However if it is not, PMX will make some
assumptions. At the start of the first input block the pitch will be set as if the prior note were
middle C. In later blocks PMX will use the obvious inheritance rules from the end of the prior
block. However, if the number of voices in a staff has changed from the prior block, it is safest to
reset the octave at the start of a new block. Duration is never inherited and must be set at the
start of each input block.

Dots can be a little tricky, because even though they affect the actual time value, they don’t
affect the basic time value, and it is only the latter that is “sticky”. Therefore, if a note is to be
dotted, you always have to enter a d (or a period, see next paragraph) somewhere within the
command, after the note name, even if the actual time value and octave are the same as the prior
note. But the basic time value need not be re-entered if it hasn’t changed (unless the note is more
than a fourth from the prior note and you have for some strange reason elected to indicate the
octave with a number rather than + or -). So for example, consecutive dotted half notes, each
within a fourth of the previous one, could be most cleanly entered as cd24 ed gd ed, whereas
cd24 e would represent a dotted half note followed by a plain half note (since the basic time
value—as defined by the first digit—was a half note all along).

There are two special shortcut rhythmic notations. For normal dotted rhythms (3:1 ratio), if
you include a period (.) in the note command, it will (a) assign a dot to the note just entered,
(b) terminate that note, (c) prepare to receive the next note name without any space, and
(d) automatically assign a time value to the second note equal to one-third of the first one. No
time value may be entered for the second note, but octave and accidental data may. Ornaments
and slurs (see below) following this command will apply to the second member. If you need to
follow the main note with some modifying command, you can still use the shortcut (.) after that
command and a space. The main advantage of this shortcut comes if you want to follow one
dotted pair with another of the same rhythm; then you needn’t enter any explicit time value for
either member of the second pair. This is possible because after using the shortcut, the basic
(inheritable) duration is set to that of the first note in the pair, without the dot.

For paired notes with 2:1 rhythmic ratios, the character , (comma) behaves similarly to the
. (period) for 3:1 rhythms.

Xtuplets, or groups of notes with their stems connected, can have from 2 to 24 notes or rests.

2 ELEMENTS OF PMX 10

Normally they all have the same duration, but there are several options—described below—to
change this. The command for the first note of an xtuplet begins exactly like a note or rest
command, with the name of the first note in the xtuplet, or r if it starts with a rest (see next
subsection), and an optional time value. However, the actual time value (including a dot if
present and a basic duration that may have been inherited from the prior note) now represents
the total duration of the xtuplet. Next (with no space, as usual) comes x followed by either a one-
or two-digit integer for the number of notes in the xtuplet, or T to initiate a 2-note tremolo, to be 2.80
further discussed below. The only options allowed immediately following the number are d and n .
d signifies that the first note of the xtuplet should have a dot and the second, and extra flag. n
controls the printing of the number and bracket. If n is followed by a blank, then no number will
be printed. On the other hand, an unsigned integer here is taken as a substitute number to be
printed instead of the natural one. If one or two signed decimal numbers follow n (each starting
with + or -), the first is a vertical shift in \internotes, and the second, a horizontal shift in
notehead widths. Another suboption to n is f, to flip the number vertically from its default
position. A final suboption to n is s followed by a signed integer. It applies only to non-beamed
xtuplets, for which it tweaks the slope of the bracket above or below the xtuplet. For non-beamed
xtuplets, you can further change the appearance of the bracket and number as explain in
section 2.3.8.

The second through last notes of the xtuplet are each then represented by a separate
command containing a subset of the characters permitted for ordinary notes or rests: note name
or r (the only required character), accidental, and octave change character (+ or -). The octave
may be given explicitly instead, and any integer will be interpreted as such, as no time values or
dots are permitted.

The last note of an xtuplet may not be a rest.
To double the duration of any note in an xtuplet, add the character D to the command for

that note. This will decrease the expected number of notes in the xtuplet by one. To add a dot to
the doubled note (as Bach sometimes did), use F instead of D. To add a dot to one note and an
extra flag to the next, include d in the note command, after the x if it’s the first note of the
xtuplet as noted above.

As an example, an ascending quarter-note triplet scale would be notated
c44x3 d e f4x3 g a b4x3 c d ...

2.2.2 2-note tremolos

A 2-note tremolo is a special case of an xtuplet. It represent a rapid alternation between two 2.80
notes. It is notated with a pair of notes, either beamed or unbeamed, with the possible addition
of from one to three indented, disconnected beams between the two note stems. Like an ordinary
xtuplet, it begins with a note name, optional duration and octave level, then the character x. The
duration applies to the total time value of the two notes, and is currently limited to either a half
note (2), quarter (4), or eighth (8). The duration may be dotted. Next comes a T. This is
optionally followed by one or two integers from 0 to 3. The first indicates the number of ordinary
beams connecting the two notes; the second, the number of indented beams. No other options are
allowed, and some options are prohibited, such as zero ordinary beams on anything except a
quarter or dotted quarter tremolo. If no integers are entered, defaults are assigned: (3,0) for a
half, (0,3) for a quarter, and (1,2) for an eighth. After a space, the second note of the tremolo is
entered. If the total duration is a half or dotted half, the noteheads will be open. For a whole
note tremolo, two consecutive half note tremolos should be used. As with ordinary xtuplets, the
horizontal spacing of the notes will always be the correct value for notes with half the duration of
the total.

Some examples are shown below. When two versions are shown for a given duration, the first
is the default. The following PMX code generates the example.

2 ELEMENTS OF PMX 11

f24xT a fxT a | fxT20 a fxT20 a /

L2 fd24xT a r4 | f24xT a f2xT20 a /

L3 fd44xT a r8 f44xT a r4 | f44xT02 a fd8xT a r1 f8xT a r4 f8xT11 a /

G 4
4

whole note default

˘
ĎĎĎĎĎĎ˘ ˘

ĎĎĎĎĎĎ˘
whole note fast

˘
ĎĎĎĎ˘ ˘

ĎĎĎĎ˘

G
dotted half

` ˘
ĎĎĎĎĎĎ`˘ >

half note default

˘
ĎĎĎĎĎĎ˘

half note fast

˘
ĎĎĎĎ˘

G
quarter
dotted

` ˇ ĽĽĽĽ
ĽĽ̌̀
?

default
quarter

ˇ ŐŐŐŐŐ
Ő̌
>

fast
quarter

ˇ ŐŐŐŐ̌
eighth
dotted

` ˇ ŐŐŐŐ
ŔŔ̌̀
@

default
eighth

ˇ ŞŞŞŞ
ŤŤ̌
>

fast
eighth

ˇ ŞŞŤŤ̌

2.2.3 Rests

The command for a rest starts with r. Then for a normal rest, in either order come a digit for the
basic time value (using same codes as for notes, optional if unchanged from previous value), a d if
the rest is dotted, and a second d if double dotted. The basic time value of a rest affects future
notes and rests the same as if it had come from a note, i.e., it applies until another value is
entered with a subsequent note or rest in the same voice. The command rp represents a full-bar
rest notated with a pause character (whole rest) regardless of the time signature; in this case no
other duration information is needed or allowed. rb, followed if necessary by a duration specifier,
denotes a blank rest, one that occupies space and time but is invisible. This is most often used
when there are two voices in a staff and one drops out for some of the duration of the current
input block. (See mwalmnd.pmx for examples). The option o (for off-center) suppresses centering
a full bar rest. If you don’t exercise this option, then all full-bar rests will be horizontally centered
between bar lines, including pauses (rp) as well as normal rests that fill the bar. rm followed
immediately by an integer will generate a multi-bar rest, a special combination of characters
between two bar lines with an integer above representing two or more bars of rest. This command
will generally only be used in separate parts after having been automatically generated by
scor2prt. However, it may be used in a multi-line score, provided it is entered for the same
number of bars in every staff.

The default vertical position of a rest depends on whether there are one or two voices in the
staff. For one voice it is just the MusiXTEX default (approximately centered on the middle line).
On the other hand, in the lower voice in a two-voice staff, the rest is lowered 4\internote, while
in the upper voice it is raised 2\internote. The PMX default can be manually overridden by
appending + or - and an integer representing the offset from the middle line of the staff (not from
the PMX default if there are two voices in the staff!). So for example, in a single staff in 3/4
meter, two voices, each with a half note followed by its own quarter rest would be either

c24 r4 //

c25 r4 /

or equivalently

c24 r4-4 //

c25 r4+2 /

2 ELEMENTS OF PMX 12

while

c24 r4+0 //

c25 r4b /

would produce two notes followed by a single, vertically centered rest.
Another way to override the default vertical positioning of rests is useful in keyboard scores,

or in fact any score containing two voices on a staff. The option K (for Keyboard) in the A
command generally causes rests to be aligned horizontally with notes in the voice in which they
are entered. See section 2.3.8 for a detailed description.

2.2.4 Chords

Chordal notes, which always share a stem and the same time value as the prior note, are
symbolized with z (for zero time) followed by a note name and optionally an accidental, + or - as
octave indicator, and e or r for a left or right shift by one notehead width. No basic time value is
allowed. If the main note is dotted, then the chordal note will appear with a dot regardless of
whether a d is entered. The only time a d is required in a chordal note command is if the dot’s
position is to be adjusted; in this case the d is required, followed by one or two decimal numbers,
each preceded by + or -. The first is the vertical shift in \internotes; the second, the horizontal
shift in notehead widths. Any number of chordal notes can follow a single main note. The stem
direction of a chord is controlled by the main note, but may be manually overridden with u or l
in the main note command.

When chordal notes are beamed together, the default height and angle of the beam will be
determined by the main note on each stem (the one without z). If a beam joining chordal notes
looks bad, you can usually fix it either by changing which note acts as the main one, or by
fine-tuning the beam parameters as described in section 2.2.12.

PMX uses a complex algorithm to automatically position accidentals in chords. If you are
unhappy with the result, you can manually tweak the horizontal positions as described in
section 2.2.1.

Although there is no dedicated command for it, chords can be made to span from one staff
to another using various techniques. The approach will depend on whether the chord is 2.73
single-stemmed with no flag, single-stemmed with a flag, or beamed. If beamed, it will also
depend on whether it is an xtuplet or not. Examples of all the basic possibilities are contained in
the sample file staffcrossall.pmx.

For unbeamed, unflagged staff-crossing chords, by lengthening the stem with the L option on
the main note, it can be made long enough to join with an unflagged single-stemmed note or
chord in the next staff. Single-stemmed notes with one or more flags can be joined across staves
with a trick discovered by Andre Van Ryckeghem: In one staff create a standard note or chord
with the stem pointing away from the other staff. In the other staff, place the chord notes in a
one-note forced beam that has been lowered or raised into the first staff (e.g. [-10 b14]); that
will stretch the stem to join the other notes, but with just one note (or chord) in the beam, the
crossbar will have zero length and be invisible.

Beamed chords may also span from one staff to another, using joined beams (see
section 2.2.12). The general approach is to construct a set of chords (or single notes, if the other
chord notes are in the other staff) in each of the two staves, enclose each set in a separate forced
beam, and join the two beams with]j...[j . It is important to remember that the lower staff is
processed first. So in most cases, the end of the segment in the lower staff must be joined (using
]j) to the start of the upper segment (with [j). It turns out that for non-xtuplet beamed chords,
in all cases where the chord at the beginning of the beam has a note in the lower staff, this works
fine provided that the forced beams are of equal duration and cover the same time span, and that
positions in either staff with no note are represented with blank rests \rb inside the force beam.

2 ELEMENTS OF PMX 13

So for example a set of beamed chords that starts only in the lower staff and ends only in the
upper could be represented by

{\tt [+28 g83 g g rb]j /

[jf rb g84 g g] /}

This example highlights some other issues, viz., that the beam height or direction of one or both
beam groups may need to be altered. Often this will require trial and error.

Unfortunately this two-group procedure breaks down if the first chord in the beam has no
notes in the lower staff. There are tricks to get around this; the user is referred to the file
staffcrossall.pmx for examples. However, there is a much more straightforward way to define
staff-crossing beamed chords that begin in the upper staff: it simply requires defining the beamed
group in each staff as an xtuplet within a forced beam. It turns out that the treatment of
staff-crossing beamed xtuplets is more robust than for non-xtuplets, and will admit more intuitive
coding. So for example, the reverse of the above example, where the beam starts in the upper
staff and ends in the lower, could be obtained with

{\tt [+28 rb2x4n g3 g g]j /

[jf g24x4 g g rb] /}

where we used the option n to suppress printing the number. As you might expect, more general
staff-crossing beamed chordal xtuplets follow the same concepts already described for
non-xtuplets, but as noted, they are more robust and admit patterns that start in the upper staff
and end in the lower one. staffcrossall.pmx also contains examples this approach.

2.2.5 Grace notes

A grace note command starts with a G. It is entered in its natural order, normally before the main
note, but sometimes after. After G and before the note name, comes any combination of the
following options: an unsigned integer (which may have 2 digits) representing the number of notes
in the grace (default is 1), m and a digit for multiplicity (number of flags or beams, default is 1, 0
is allowed), s for slur (joining all notes of the grace to the main note; no other s is needed on the
main note), x for a slash (only for single graces), l or u to force the direction of the stem(s), X
followed by a decimal number x to insert a gap of x notehead widths between a normal grace and
its main note, A (for After) or W (for Way-after) to associate the grace note with the prior note. 2.6
Next comes the only required character, the first note name. No time value can be entered, but if
needed, the octave or an accidental can be given as in a normal note. Second and later notes must
follow immediately in sequence, set apart by spaces, likewise without any time value, and without
any intervening commands.

Normal or after-graces will be placed immediately before or after the main note; way-after’s,
as far to right as possible before the next note or bar line. If either type of after-grace is slurred,
the slur will start on the main note and end on the last one in the grace.

2.2.6 Ornaments

Commands for ornaments are entered after their associated note command. The ornaments now
available are shake (ot), mordent (om), “x”- or “+”-shaped ornament symbols (ox, o+), pizzicato
(ou), strong pizzicato (op), left parenthesis before notehead (o(), right parenthesis after notehead
(o)), upper fermata (of), down fermata (ofd), staccato (o.), tenuto (o), two different segnos
(og or oG), Coda (oC), arbitrary-length wavy-line trill with tr (oT), arbitrary-length wavy-line 2.71
trill without tr (oTt), sforzando (o>), duncecap (o^), caesura (oc), and breath (ob). All except
the parentheses, staccato, tenuto, and down fermata will normally appear above the staff; the
parentheses appear at the level of the note head, and staccato and tenuto just above or below

2 ELEMENTS OF PMX 14

depending on the stem direction. The only difference between staccato and pizzicato is the
vertical positioning of the dot.

Either type of trill may immediately include an unsigned decimal number to specify the
length of the printed symbol in current \noteskips; the default is 1. Thus oT0 represents tr with
no wavy line.

Once the ornament type has been specified, most of them can be raised or lowered from their
default position by appending a signed integer to the command, representing the vertical offset in
\internotes. . A second signed integer specifies a horizontal shift from default in notehead
widths.

The caesura and breath marks differ from the others in their default horizontal position,
which is 0.5\noteskip past the note.

The og segno has several special properties. It must be entered in the first (lowest) staff, but
will appear above every staff. Its vertical position cannot be altered, but if appended by a
number...unsigned if positive...all appearances will be shifted horizontally by that number of
points. On the other hand, the oG segno has a smaller symbol than og, applies only to the note 2.71
after which it is entered, and can be shifted just as a normal ornament.

An ornament can be automatically repeated on a series of consecutive notes, provided the
notes are all in the same voice and the same input block. To activate this feature, terminate the
first ornament command with : . Then every note in that voice will have the same ornament until
a note is followed by the repeat terminator o: .

2.2.7 Editorial accidentals

To place a small sharp, flat, natural, or question mark above the staff, after the affected note
enter oe followed by s, f, n or ?. You may also put a question mark right after the accidental.

2.2.8 Slurs

By default PMX will use MusiXTEX’s built-in font-based slurs. But through user intervention it
is possible to use either one of two different types of postscript slurs. Type K slurs, developed by
Stanislav Kneifl, are directly supported by PMX and will be the focus of any future
PMX enhancements. They are globally activated with Ap and several global defaults set with
other options to the A command as described in section 2.3.8. If these are used, so will an
alternate set of hairpins (see section 2.2.11). The other postscript slur option is Hiroaki
Morimoto’s Type M slurs. These are not directly supported by PMX, but are intended to be
fully compatible with the default font-based slurs. To use them, one would use the in-line
TEX command \\input musixpss\ , and be sure not to enter Ap . From PMX’s standpoint they
are no different from font-based slurs.

There are some advanced options available only with Type K postscript slurs, and a few
obsolete ones only with font-based. At this point the main difference in functionality between the
two is that with postscript, PMX provides support for true ties, which are shaped and positioned
slightly differently from slurs. Future enhancements will probably only work with Type K
postscript slurs. Some users do still prefer font-based, possibly because Type K postscript slurs
are not visible in some DVI viewers. New users should experiment with the various types of slurs
and decide for themselves.

The normal commands for slurs are (placed with a space before a note, and) placed after.
The command s is equivalent to both of them (!), except that it always follows the affected note.
With font-based slurs, t is equivalent to s but with several minor differences to be explained
later. With postscript slurs, t signals to use a true tie. The commands s and t are toggles,
turning a slur or tie off if it’s already on and starting one otherwise.

2 ELEMENTS OF PMX 15

A slur or tie may end on a rest, but not start on one. The default ending height in this case
will be the same as the starting height, and it may be tweaked as described below.

The first character is optionally followed by a single-character ID code 0-9 or A-Z, then by
other options described below. ID codes are only needed if two or more slurs are open at the same
time within one voice, such as when several chord notes are tied. Using ID codes in such cases
tells PMX which open slur to close. ID codes cannot be used with font-based t slurs.

The rules for finding the default direction and position of a slur are complex; many factors
enter into defining visually pleasing values. But there’s no need for gory details here; the result
will usually satisfy, and if not, it can easily be tweaked. The default direction of curvature can be
overridden with u (upper), l (lower), or equivalently d (down). Starting or ending position can
be shifted from its default by entering one or two explicitly signed numbers. The first, which must
be an integer, represents the vertical shift in \internotes; the second, which may be decimal, the
horizontal offset in notehead widths. Starting or ending position of a postscript slur or tie can be 2.71
made to align with the end of the stem of an unbeamed note by using the option v. No other
options are permitted with sv, but any desired position can be forced with the numeric options.

The shape of the slur may be altered as well. This paragraph deals with font-based slurs, for
which the shapes may be less than fully satisfying due to fundamental limitations of MusiXTEX.
At the slur termination only, one or three more parameters may follow the ones just described.
The first, a signed, nonzero integer, is a vertical adjustment to the mid-height of the slur in
\internotes. The next two, integers between 1 and 7 following a “:”, are alterations to the
starting and ending slopes. These numbers are passed directly as arguments of the MusiXTEX
macros \midslur (if only one is given) or \curve (if there are three).

For Type-K slurs, the shape may be changed locally by including f in either the slur’s
starting or ending command to flatten it a bit, or h, H, or HH to increase its curvature and raise or
lower its middle by increasing degrees. The default curvature can be altered from normal with
new suboptions to Ap as described in section 2.3.8. Local curvature tweaks will take precedence
over the global default. A special option n to the slur command can be used to locally restore the
normal curvature if the default curvature has been globally changed.

Another option peculiar to Type-K slurs and ties is to locally override the global setting for
automatic height adjustment (to avoid tangencies with staff lines). The global defaults may be
changed with the A command as described in section 2.3.8. To override the global setting for the
current slur or tie only, use the option p in the command that starts the slur or tie, followed by +

or - (to turn adjustment on or off), followed by s or t (for slur or tie).
A dotted slur is activated by including the option b (for broken) in the command that starts

the slur.
Slurs involving grace notes are specified within the command for the grace (see section 2.2.5).
For font-based slurs, the unique aspect of t slurs is that if one starts or ends on the same

note as an s slur, the former will be moved away from the notehead to avoid a collision. This only
works if neither slur has an ID code. This feature is only retained for backward compatibility.

The available options should cover most circumstances, but if not, the TEX macros \isu etc,
defined in pmx.tex, can be entered as in-line TEX commands (see section 2.4). These commands
have three arguments: slur number, vertical position (pitch, or offset from bottom staff line in
\internotes), and horizontal offset in notehead widths. When using these commands, you must
choose an explicit slur number. Use one large enough to avoid conflicts with PMX’s automatic
slurs, which are numbered from 0 upward. Also, remember that non-spacing in-line TEX
commands such as this one must come before the note they apply to, in contrast with the
PMX slur toggles which may come after.

2 ELEMENTS OF PMX 16

2.2.9 Ties

With font-based slurs, in PMX the only difference between ties and slurs is the default
positioning. Ordinary slur ends are centered horizontally above or below the notehead, while tie
ends are shifted inboard and closer to the midheight of the notehead. To specify a font-based tie
in PMX, use a slur command and include the option t in it, somewhere after the initial (,) ,

s or t .
With postscript slurs, ties—indicated with t or st—will have similar differences in endpoint

positions, but in addition will have a different shape (somewhat flatter) and will always end at the
same height they start. There is also an option to the A command that affects ties across line
breaks (see section 2.3.8). By default the second part of such ties will be drawn as a complete tie
symbol. However, if you want them to be a half tie—a special shape that is horizontal at its left
end—use the command Ap+h at the start of the file.

In addition to the notation options just mentioned, ties may also be indicated with the
character { before the starting note and } after the ending note. 2.6

2.2.10 Line-breaking Type K slurs and ties

No special action is required if a slur or tie happens to cross a line break. However, some special,
manual adjustments are available for Type K postscript slurs in these cases. The global option
Apl by itself adjusts several parameters as described in section 2.3.8. Further, if Apl has been
issued, then case-by-case adjustments for line-breaking Type K slurs and ties are available as
suboptions to the slur commands. To tweak the horizontal and vertical positions of the end of the
first segment, enter the suboption s in the command that starts the line-breaking slur or tie,
followed by two signed numbers representing respectively the vertical shift in \internotes and the
the horizontal shift in notehead widths. To tweak the position of the start of the second segment,
follow the above by another s and two more signed numbers. The usual curvature options h, H,
HH, and f, if included in the starting command for a line-breaking slur, will apply only to the first
segment, and if in the closing command, to the second segment. If the tweaked slur or tie does
not happen to come at a linebreak, the special position tweaks (after s) will all be ignored, and
the curvature tweaks on the closing note will take precedence as they normally would.

2.2.11 Dynamics

After the affected note, enter D followed by one of the following pppp, ppp, pp, p, ffff, fff,

ff, f, mf, mp, fp, sfz, "[any text]", >, or < . The last two are diminuendo and crescendo,
and they are toggles, i.e., the first one of each starts the symbol and the next one ends it. The
one surrounded by double quotes is an arbitrary text string no longer than 64 characters, which 2.76
may include embedded TEX. With any dynamic mark, you can also enter position shifts, vertical
as a signed integer representing the number of \internotes, then horizontal as a signed number
representing number of notehead widths. There can only be one of the letter-groups on each note,
but there may also be D< and/or D> on the same note. These must be entered as separate D...

commands, and must come in the right order, e.g.,

[some notes] D< [more notes] D< Dffff D> [more notes] D>

Hairpins may span from one input block to the next. 2.7
There are numerous context-sensistive automagic adjustments to the positions of all the

dynamic symbols. If you don’t like the result you can adjust the position as just described.
Due to MusiXTEX’s limitations, there are some restrictions on hairpins when using

font-based slurs. They cannot be longer than 68mm, they cannot wrap over a system break, and
they must be horizontal. Finally, only certain specific lengths are available so some horizontal

2 ELEMENTS OF PMX 17

position tweaking may be needed, especially when letter-groups and hairpins are combined. These
restrictions are all removed when using postscript slurs.

2.2.12 Beams

For the most part, PMX automatically takes care of the details of defining beams: selecting
which notes are beamed together, and setting the angle, direction, height, and multiplicity (the
number of bars along the top or bottom). However, one may define a forced beam—which
overrides PMX’s selection of which notes are beamed together—by surrounding the included
notes with [and], being certain to separate these commands and their options from the included
note commands with spaces. One may also wish to edit certain features of a beam even when
PMX’s grouping decision would otherwise be acceptable; here again the beamed notes must be
set apart with [and].

The [may optionally be followed immediately by several options.
u or l will override PMX’s selection of the direction of the beam, while f will flip it from

whatever PMX decided.
j joins the beam grouping to a prior one started in another system (see below).
One, two, or three consecutive integers, each preceded with + or - , will affect the beam’s

appearance. The first integer is an adjustment to the starting level (in \internotes) and may
range from -30 to 30; the second is a slope adjustment with the same permissible range; the third
is an alternate adjustment to the starting level (in beam thicknesses) and may only range from 1
to 3, always acting to increase the stem length. The latter may be used to align consecutive
horizontal beams which have internal multiplicity changes. For example, in 2/4 time,
c84 c1 c c c c8 would cause two beams but the first one would be lower than the second;
[+0+0+1 c84 c1 c] c c c8 would align the tops of the beams with each other. Due to the
complexity of PMX’s beam analysis procedures, these editing commands may sometimes
produce unexpected results, and some iteration may be required to get exactly what you want.
For example, [+0+0+3 cd8 c3 c6 c] c c c3 cd8 will not produce two aligned beams as
desired, because when PMX analyzes the first beam, it automatically raises the starting level a
bit for another reason, namely, to avoid too short a stem on the 64th notes at the end of that
beam. In this case, the user could counteract PMX’s internal adjustment by using
[-1+0+3 cd8 c3 c6 c] c c c3 cd8.

The option h forces the beam to be horizontal.
The character m followed by a digit 1-4 forces the multiplicity of the beam, the number of

stem-joining bars.
By default, xtuplets are set apart with their own beam. To beam an xtuplet together with

other non-xtuplets, just include it with the other notes in a forced beam.
Rests may also be included within forced beams, provided they are shorter than quarter

rests, and of course that they come between the first and last notes under the beam.
It’s now easy to define a repeating forced beam pattern. If the option : (colon) is included

in the starting command [for a forced beam, then after you end the beam, more beams of the
same duration will be forced in that voice, until stopped. They will be stopped at either the next
regular forced beam, or the end of the input block for that voice, whichever comes first.

Some users may wish to define beamed groupings with subgroups joined by a single beam.
The command][, standing alone between two note commands in a forced beam, causes the
multiplicity to decrease to unity and immediately increase to its natural value for the next note.
For example, [c14 c c c][c c c c] will generate two doubly-beamed groups connected by
a single beam.

Related to this is a single-slope beam group, which is the same as described in the previous
paragraph except that the beam disappears between segments. Segments should be separated by
]-[standing alone between two notes inside the forced beam.

2 ELEMENTS OF PMX 18

If there are large jumps in pitch between notes in a beam within a single staff, as a matter of
taste you may wish to start the beam for example as an upper one and end it as a lower.
PMX will never do this automatically, but you can accomplish it by forcing the beam with
appropriately modified up/down-ness, starting level, and slope. If you use this technique, there
are two details to note: (1) if there are any intermediate multiplicity changes, they will only be
handled properly if the initially specified up-down-ness is consistent with the vertical position of
the intermediate notes involved, and (2) for proper appearance in crowded scores you may wish to
insert hardspace or shifts as described in section 2.3.9. Some examples are included in most.pmx.

Beams cannot normally jump staves. But if that is desired, start the beam normally in one
staff, and terminate the part of the beam in that staff with ...]j . Then resume the beam in
the new, adjacent staff with [j For staff-jumping beams, it’s OK to have just a single note
inside one or both of the members. Some adjustment of the beam height and slope may be
required. Sometimes the ending section’s up-downness must be overridden; you will know this is
so if the ending is shifted horizontally from its proper position by one notehead width. Each voice
must still have the right number of beats, so you will probably need to fill time with blank rests
after the first member of the beam in one staff and before the second member in the other. There
can still only be one staff-jumping beam open at a time.

2.2.13 Clefs

A clef change is signaled by C followed by a single lower-case letter or digit using the code specified
in section 2.1. If clefs come out at the wrong vertical position, refer to the note in pmx.tex.

2.2.14 Arpeggios

To set an arpeggio (a vertical wavy line), simply place the command ? after the commands for
both the first and last note. To shift the symbol to the left by x notehead widths, use the option
-[x] . 2.6

2.2.15 Lyrics
2.73

Lyrics depend on the underlying TEX command \pmxlyr developed by Dirk Laurie, which is
defined in pmx.tex. It in turn makes use of the macro package musixlyr.tex developed by
Rainer Dunker. So to enable lyrics within PMX, you will need to ensure that musixlyr.tex is
installed somewhere in your system where your TEX processor can find it.

Lyrics can be inserted by enclosing them in double-quotes inside the music line just before
the first note to which they apply, as in "us-ing lyr---ics now ". Once the first double
quote is encountered, PMX will ensure that musixflx.tex is input into the TEX file.

Lyrics for several notes can be defined in one go. The lyrics in each input string demand a
specific number of notes, depending on the number of syllables, hyphens, and underscores. If there
are not enough lyrics, question marks will appear; if too many, the excess syllables will not appear.

The rules for aligning lyrics properly with notes are as follows. Words are separated by
whitespace, with any number of spaces counting as one. Syllables within a word that require just
one note each are separated by a single hyphen. There are two ways to extend a syllable over two
or more notes. If it is the last syllable in a word (like "now "), follow it with consecutive
underscores, one for each extra note, and finally a space. It will be printed with a continuous
underscore. To extend a syllable within a word (like "lyr---ics"), insert one extra hyphen (with
no spaces) for each extra note, and it will be printed with some number of hyphens filling the
proper space between syllables. Conversely, a tilde (~) between two words (with no spaces) prints
a space between them while assigning the last syllable of the first and the first syllable of the

2 ELEMENTS OF PMX 19

second to a single note1. So in the end, in a voice with lyrics, every note must be associated with
a syllable, its extension, or two syllables joined with a tilde.

Although underscores within a word or consecutive hyphens at the end may not crash the
code, they are not recommended for any foreseen useful purpose.

Accented characters can be included in lyrics or elsewhere in several different ways. Here we
provide examples for just one of those methods, one which uses special TEX commands. The
following PMX input contains most of the available accented characters and leads to the example
pictured below.

"\’o \‘o \^o \"o \~o \=o \.o \u{o} \v{o} \H{o} \t{oo}"@b+4

c44 d e f g a b c c- d e r /

"\c{o} \d{o} \b{o} {\oe} {\OE} {\ae} {\AE} {\aa} {\AA} {\o} {\O} {\l} {\L} {\ss}"

c44 d e f g a b c c- d e8 f g a /

G 4
4

ó

ˇ
ò

ˇ
ô

ˇ
ö

ˇ
õ

ˇ
ō

ˇ
ȯ

ˇ
ŏ

ˇ
ǒ

ˇ
ő

ˇ
�oo

ˇ >

G
o̧

ˇ
o.

ˇ
o
¯

ˇ
œ

ˇ
Œ

ˇ
æ

ˇ
Æ

ˇ
å

ˇ
Ǎ̊ ø

ˇ
Ø̌ �l

ˇ
�L

ˇĎĎ
ß

ˇ
By default, lyrics will be placed below the staff where they are entered, half way between

that and the next lower staff. You may want to alter the vertical position of a lyrics line,
especially if both voices in a staff have lyrics. This is accomplished with the opfion @, immediately
following the closing quote of the lyrics string with no space. That must be followed by either a or
b for above or below the staff, then a signed integer for the number of \internotes above or
below the default height. This command is ”sticky”; it will remain in force for later lyrics in the
same voice until altered.

It may also be necessary to allow extra vertical space where the lyrics are positioned. There
is no PMX command for this, but type 2 inline TEX can be used to insert extra vertical space
above any instrument. For example, if the voice is in instrument #2 and lyrics are below that
staff, \\interinstrument=0\internote\\setinterinstrument1{8\internote}\ will add
8 \internotes in the space for the lyrics.

Present limitations allow lyrics at upper and lower voices on the bottom two staves of
instruments 1 to 4. Elsewhere they are quietly ignored.

Most scores with lyrics will benefit from the type 2 command \\sepbarrules\, which stops
bar lines from crossing through the vertical space between instruments.

The notation "us-ing lyr---ics now " is actually shorthand for the inline TEX string
\pmxlyr{us-ing lyr---ics now }\. All the rules given in section 2.4 for Type 1 TEX strings
apply. To ensure that the length of all the Type 1 TEX strings belonging to a particular note
combined does not exceed 128, remember to account for the nine characters in \pmxlyr{}.

This way of entering lyrics is a convenient interface to a small subset of the facilities offered
by musixlyr. If more advanced features than those supported by \pmxlyr are needed, the
necessary musixlyr macros could be entered as in-line TEX directly into the .pmx file - see the
example file netsoos.pmx for some of those.

If really advanced features are needed (such as having several verses of lyrics at once), most
users would prefer the convenient interface to musixlyr via the program M-Tx developed by Dirk

1This is just an example of using a standard TEX feature within lyrics.

2 ELEMENTS OF PMX 20

Laurie. It is a pre-preprocessor which produces a .pmx file containing the proper in-line TEX
commands. Its input language is similar (but not identical) to PMX and includes most
PMX functionality as a subset.

2.3 Commands That Affect All Voices

Most commands that affect all the voices can only appear in the first (lowest) voice in the first
(lowest) staff. Most such commands will automatically be transferred from score to parts when
separate parts are generated by scor2prt (see section 3).

2.3.1 Repeats, double bars, forced single bars

Repeat signs, double bars, and other bar-ending options are signaled by R followed by l, r, lr,

d, D, dl, b or z for left repeat, right repeat, left-right repeat, thin-thin double bar, thin-thick
Double bar, thin-thin double bar followed by left repeat, single bar, or blank (invisible) barline.
Some of these have peculiarities. Rb forces a single bar before a movement break (see
section 2.3.12), where otherwise by default there is a double bar. That can be useful for example
if you change the number of instruments (via an option in the movement-break command) in the
middle of a movement. Rz will cause a blank barline at the end of the current system, not
necessarily the current bar. It can be used together with blind meter changes if you want to split
a bar across a system break. If Rlr falls at a system break, PMX will automatically split it in
two. The command Rdl will likewise be split at a system break, but if not at a system break, the
d will be ignored.

These commands must be in the first voice. It is best only to place them before the first note
in an input block or if necessary after the last one; otherwise scor2prt may behave erratically.
Using two separate R commands in succession will cause unpredictable results.

2.3.2 Voltas (first and second endings)

Beginnings and ends of first and second endings are signaled by V (for volta). If it’s the end of the
volta, add the option b (for box) or x for no box. If it’s the start of a volta, you can optionally
enter any text at all that doesn’t include a space and doesn’t start with b or x (most commonly 1

or 2). A period will automatically be appended to the text. If one volta ends and another starts
right away, only a single V is needed. Voltas must only be entered in the first voice. If separate
parts are to be created from a score using scor2prt, then only a single volta is allowed in any
given input block, and it must be at the beginning of the block.

2.3.3 Meter changes

Meter can only be changed at the beginning of an input block. A meter change command starts
with the letter m. There are two different ways to complete the command.

Method 1. Enter 4 numbers with no intervening spaces. The four numbers are mtrnuml,
mtrdenl, mtrnmp, mtrdnp as defined in section 2.1, with the following exceptions for this method
only: You must use o to represent the number 1; if you enter the digit 1 then PMX will interpret
that digit and the next as a 2-digit integer, between 10 and 19 inclusive. 19 is the largest number
that can be entered with this method. Note that mtrdenl=0 still represents a whole note.

Method 2. Enter the four numbers verbatim in the order just listed, but separate them
with slashes (/).

2 ELEMENTS OF PMX 21

2.3.4 Fundamentals of key changes and transposition

As explained in section 2.1, the intial key signature, also called the concert key, is specified in the
setup data. In order to change the key signature or to transpose (i.e. make the printed notes
appear at a different level than where they were entered), use the K command. The syntax is
K[n][k] where n and k are explicitly signed digits respectively giving the distance to transpose in
\internotes, and new key signature. When transposing, you should always use relative
accidentals, activated by the separate command Ar at the start of the first input block (see
section 2.3.8). For example, to transpose a piece in C major to E major you would enter
Ar K+2+4 at the beginning of the first block.

To transpose by a half step to a key with the same letter name, use K-0[k] where as before k
is an explicitly signed integer giving the new signature. (Using -0 instead of +0 eliminates
confusion with a simple key change, see the next paragraph.)

A simple key change can be signalled at the start of any input block. Use the command K

with n=+0 as the first argument and the new key signature as the second.
If the signature changes from sharps to flats or vice-versa, the default will be to include

naturals in the first instance of the new signature. To suppress this behavior, use the option n 2.7
right after K . For example, to change from 2 flats to 3 sharps and suppress the naturals, enter
Kn+0+3 .

The procedures described above will affect all instruments in the score. To change the key of
or transpose just a single instrument, use Ki[m][n][k] when m is an unsigned integer representing
the instrument number, and n and k are as just described. For more than one instrument, you
may immediately repeat everything after K (including i). This may come either at start of score
(right after setup) or at the beginning of any later input block. But if it’s later, it must be
preceded by a normal (full score) non-transposing key change command K+0[k]. For example, to
change the keys of the second and third instruments to one sharp and two sharps respectively, use
Ki2+0+1i3+0+2 .

2.3.5 More on transposition; “transposing” instruments and example files

In practice, two fundamentally different situations may arise: (1) (Full-score transposition) A
score that has been entered in one key is to be completely transposed to a different key and pitch
level, usually to force the range to fit different instruments than original; or (2) (“Transposing”
instruments) some of the instruments require a part printed in a different key and at a different
pitch level than it sounds.

To transpose an entire score from the key specified in the setup data (Case TTA), simply use
the K command at the beginning of the first input block, as outlined in the previous section.

It gets more complicated when some transposing instruments are involved, because there are
three different possibilities: (Case CTS) The transposing instruments can be entered in concert
key but printed transposed in the score and in separate parts created with scor2prt (see
section 3); (Case TTS) They can be entered transposed and printed transposed in both the score
and in parts; (Case CCS) They can be entered in concert key and printed in concert key in the
score, but printed transposed in parts. Matters are further complicated if there is a later key
change. Finally, if a MIDI file is to be produced, then in cases CTS and TTS an additional step
involving the transpose option to the MIDI command I (see section 4) must be taken.

All of the required commands for all four of these cases are summarized in the table below.
Following that, they are discussed a bit further and illustrated in four example files (named
[Case].pmx) that are also included in the distribution.

2 ELEMENTS OF PMX 22

Case PMX entry Printed score MIDI pitch Initial commands Later key change

TTA All B flat major, All transposed up transposed K+2+2 K+0-5

later key change 2 steps to D I

to B flat minor major, later to D

minor

CTS All B flat major, Trombone (1) concert Ki2+5+1i3+1+0 K+0-5

later key change concert; alto sax IT+0-5-1 Ki2+5-2i3+1-3

to B flat minor (2) transposed up

5 to G, later G

minor; clarinet (3)

transposed up 1 to

C, later C minor.

TTS Trombone (1) Trombone (1) concert Ki2+0+1i3+0+0 K+0-5

concert; alto sax concert; alto sax IT+0-5-1 Ki2+0-2i3+0-3

(2) transposed up (2) transposed up

5 to G, later G 5 to G, later G

minor; clarinet (3) minor; clarinet (3)

transposed up 1 to transposed up 1 to

C, later C minor. C, later C minor.

CCS All B flat major, All B flat major, concert %2K+5+2 K+0-5

later key change later key change %3K+1+0

to B flat minor to B flat minor;

parts printed

transposed

Case TTA: Full score transposition. Here the entire score is to be transposed. In the setup
data the signature is set to -2. Then the command K+2+2 says to transpose up 2 steps from the
initial key of B flat to D, and put 2 sharps in the key signature. No special attention is needed for
the MIDI; it will come out in the transposed key. A later (full-score) key change requires another
K command, but now the transposition parameter is set to 0 and the new key is the concert key (I
guarantee people will be confused by this). In the example the command for the signature change
is K+0-5 , making the new concert key B flat minor with 5 flats, and, considering the initial
transposition, causing the score and MIDI to come out in D minor with 2 flats.

Case CTS: Parts all entered in concert key, but some transposed in the printed score. Here,
to produce the printed score, parts are all entered in concert key, but instrument-wise
transposition is used for the transposed instruments. In the example the alto sax part is entered
in B flat but will be transposed up 5 steps in the printed score, to G major. This is brought
about with Ki2+5+1 . Similar logic applies to the clarinet part, while the trombone part is not
transposed. If a MIDI file is desired, it will come out in concert key, but only after using the
transpose option in the MIDI command to undo the transpositions caused by the K command. In
the example the command IT+0-5-1 does this, “de”transposing each of the three instruments by
the necessary number of steps. For a later key change, first the full-score K command changes the
concert key, then the instrument-wise Ki command, with the same transpositions as the initial
one, sets the new key signatures for the transposing instruments. Here the signatures to be
entered are the transposed signatures, i.e., the ones that will be printed.

Case TTS: Parts entered in respective transposed keys, and printed in those keys in the
score. In this method of scoring transposing instruments, parts for transposing instruments are
transposed ahead of time and entered exactly as they will appear in the score. So to produce the
printed score this way, the pitch does not have to be changed, but the key signatures must be set
separately for each transposing instrument using the Ki command. In the example, the alto sax is

2 ELEMENTS OF PMX 23

entered in the key of G so the instrument-wise option for it is Ki2+0+1 . Note that +0 means no
further transposition is needed before printing, because the part was transposed on entry. Once
again, if a MIDI file is desired, it will come out in concert key, but just as in the previous case,
you must use the transpose option in the MIDI command IT to undo the transpositions caused by
the K command. For a later key change, the same full-score K command as in the previous case is
used to change the concert key. Then the instrument-wise Ki command, now with +0 for the
transpositions, sets the new key signatures for the transposing instruments, again using the
transposed signatures.

Case CCS: Parts entered in concert key, printed in score in concert key, but transposed in
separate printed parts. This is the easiest case of all. Nothing special needs to be done for the
score, but part-only, full-score transposition commands %[instrument number]K... should be
entered in the score. Then scor2prt will generate a transposed part. Of course if a MIDI is made
from the score it will come out at concert pitch. For example, to transpose the alto sax part up 5
steps, initially to G major, near the top of the score file enter %2K+5+1 . Later, where the concert
key changes to B flat minor and the alto sax to G minor, enter simply K+0-5, making the new
concert key B flat minor with 5 flats. When scor2prt is invoked to make separate parts, this will
be transferred verbatim into all parts, and then PMX will internally adjust the signature for each
transposed part as required.

Making separate parts. In all of the cases discussed, if the patterns of commands in the table
are followed, then separate parts can be made as usual using scor2prt. They will automatically
come out transposed as desired.

Texts of the transposition sample files:

%TTA.pmx

3 2 4 4 4 4 0 -2

1 1 20 .13

Trombone II+III

Trombone I

bbb

.\bs

Tt

TTA

Apr

I

K+2+2

b42 d f b t b t gf df b /

b42 d f b t b t gf df b /

b42 d f b t b t gf df b /

K+0-5

b42 c d e f gs as b /

b42 c d e f gs as b /

b42 c d e f gs as b /

%CTS.pmx

3 3 4 4 4 4 0 -2

1 1 20 .1

Trombone

Alto Sax

Clarinet

btt

.\

Tt

CTS

Apr

Ki2+5+1i3+1+0

IT+0-5-1

b42 d f b t b t gf df b /

b43 d f b t b t gf df b /

b44 d f b t b t gf df b /

K+0-5

Ki2+5-2i3+1-3

b42 c d e f gs as b /

b43 c d e f gs as b /

b44 c d e f gs as b /

%TTS.pmx

3 3 4 4 4 4 0 -2

1 1 20 .1

Trombone

Alto Sax

Clarinet

btt

.\

Tt

TTS

Apr

Ki2+0+1i3+0+0

IT+0-5-1

b42 d f b t b t gf df b /

g44 b d g t g t ef bf g /

c45 e g c t c t af ef c /

K+0-5

Ki2+0-2i3+0-3

b42 c d e f gs as b /

g44 a b c d es fs g /

c45 d e f g as bs c /

%CCS.pmx

3 3 4 4 4 4 0 -2

1 1 20 .1

Trombone

Alto Sax

Clarinet

btt

.\

Tt

CCS

Apr

%2K+5+1

%3K+1+0

I

b42 d f b t b t gf df b /

b43 d f b t b t gf df b /

b44 d f b t b t gf df b /

K+0-5

b42 c d e f gs as b /

b43 c d e f gs as b /

b44 c d e f gs as b /

2.3.6 Text

The commands h or l, when placed in the first column of an input line and followed by a blank
or, for h only, by a signed integer, stand for header and lower text. They will put a text string
above or below the top staff in the first bar of the block where they are entered. The text string
must be on a line of its own, immediately following the command. The integer is a vertical shift
in \internotes.

A title block with up to three elements can be defined at the beginning of the first input
block. Tt signals that the text on the following line is to be set as a title for the whole piece, and
it will be centered. Tc similarly indicates a composer’s name, to be set below the title and right
justified. Ti likewise stands for an instrument name, which will be set above the title,

2 ELEMENTS OF PMX 24

left-justified. The text for any of these commands can be split over two or more lines by including
\\ at the location of the line break.

Ti will automatically be invoked by scor2prt when it generates parts from a score.
Extra vertical space can be added between the title block and the top system by appending

to Tt a one- or two-digit number representing the space in \internotes. This only works if Tt is
the final title block element entered.

The D command can be used to enter arbitrary text as described in section 2.2.11.
Lyrics may be entered as described in section 2.2.15. 2.73

2.3.7 Page numbering, centered header text

If you want pages to be numbered at the top left or right, place the command P anywhere within
the PMX code that represents the first page to be numbered (usually the first or second page). P
can be followed optionally by the starting page number and/or by l or r, the latter overriding the
default locations of odds on the right and evens on the left. There is also a special option c for
centered header text. It must be the last option in the P command. It will define text to be
printed at the top of every page after the first. If a blank follows c, the default header text will be
the instrument name entered with the command Ti . If any non-blank character except " follows
c, the header text will start with that character and end at the next blank. If " follows c, the
header text will be everything between that and the next " (this permits headers containing
spaces). The P command and its options will be ignored when making parts from a score (since
page numbering will usually be different in the score than in the parts), but page numbering (and
centered headers) for parts can be still be initiated independently, for example with %!P2 or
%1P2r (see section 3).

2.3.8 Overriding certain defaults, or getting the most from PMX

Understanding this section is important if you want to get the most out of PMX. In many cases
the switches described here represent subtle but significant improvements that have come along
since PMX was initially developed. Rather than changing the defaults, they are treated as
optional in order not to upset the layout of older scores. For example, virtually every new score I
create begins with at least Abple.

As you may have guessed, it is the command A that can be used to override a grab-bag of
default settings. The available options affect a wide range of PMX features: sizes and
interpretation of accidentals, dot positions, space before the first note of every bar, space between
staves, slur package selection, vertical positioning of Type K postscript slurs, line-breaking
Type-K slurs, curvature of Type-K slurs, naming of parts, vertical positioning of rests in 2-voice
staves, brackets for non-beamed xtuplets, and inputting so-called normal include files. 2.6

Size of Accidentals. b makes all accidentals big, s makes them all small. By default, big
ones are used unless unaltered spacing doesn’t provide enough space. Thus the default behavior
may cause a mixture of big and small accidentals, and in fact is not recommended.

Relative accidentals. If transposing, then the relative accidental convention must be used,
indicated by r. This changes the way you enter accidentals. With relative accidentals, the note
options s, f, n take on unconventional meanings, now respectively signaling that a note should be
raised a half step, lowered a half step, or left alone relative to the pitch it would have according to
the key signature. So for example, with Ar, in the key of B flat major the note command bs would
cause a B natural to be printed. By contrast, the default is the normal, absolute convention, where
the indicated pitch alteration is relative to what the pitch would be if there were no key signature.

Vertical position of dots. If there are staves with two voices, d causes dots in the lower
one to appear on or below center, in contrast with the default.

2 ELEMENTS OF PMX 25

Gap at start of bar. Use a followed by a decimal number to override the default setting
for \afterruleskip, the space before the first note in a bar. The default in PMX is
1\elemskip, 20 percent smaller than MusiXTEX’s.

Space between staves within a system. If PMX’s vertical spacing between staves
within a system is not pleasing, use I or i , followed by a decimal number, to apply a scale factor
to \interstaff . I affects all pages, i only the current one. Shrinking the space between staves
within each system will cause the space between systems to increase, and conversely. These
options have no effect if there is only one staff per system.

Equal space between systems. MusiXTEX normally draws a virtual box around each
system and inserts equal vertical space between boxes. When objects protrude above the top
staff in a system or below the bottom one, this can lead to unequal spacing between the top staff
line in one system and the next. If you prefer that the vertical spacing between the staves of
consecutive systems be constant for the whole page, use the e option of the A command. One side
benefit of Ae is that it will prevent systems from spilling over onto extra pages, regardless of how
many systems are put on the page. When using this option, you may occasionally want to force
more vertical space between certain systems. There is a TEX macro \spread that can be inserted
anywhere in the system before the desired wider gap. It has one argument, the desired extra
space in \internotes.

Stop grouping systems at top in sparse pages. Another command affecting vertical
spacing is the v option of the A command (for vertical). PMX normally spreads staves vertically
over a full page, unless the white space becomes excessive, in which case it groups all staves near
the top of the page. Entering Av will suppress this grouping near the top, and ensure that systems
will always be spread vertically regardless of how much white space is left. It is a toggle; the
second time it is issued, the behavior reverts to the default.

Add extra vertical space before and/or page eject (last resort) As a last resort in 278
getting the right spacing at the top or bottom of a page, the option V will insert a vertical skip of
the specified number of \Internotes before and after then next page eject. It must be followed
by + or -, then a number, then another + or - and number.

Make some staves smaller. The S option to the A command allows you to specify a 2.7
different size for selected staves and their notes compared to the global value set in the setup
data. It is followed by exactly noinst characters, one for each instrument, selected from 0, -, s,
or t for normal, small, small, or tiny sizes respectively.

Postscript slurs. The command Ap activates Type K postscript slurs. To use this you
must have musixps.tex somewhere that TEX can find it, and psslurs.pro somewhere that dvips
can find it. If these files happen to be missing from your TEX distribution, they can be found
here. Several suboptions affecting Type K postscript slurs are described here and in the following
paragraphs. First, by default these slurs and ties will not have their vertical positioning tweaked
to avoid tangencies with staff lines. To activate this type of adjustment, use one of the suboptions
+s or +t for slurs or ties respectively. (For example, Ap+s). Be warned that this may alter the
endpoint positions from what one would normally expect. To deactivate the adjustment, use the
same command but with - . Another suboption of Ap affects line-breaking slurs. Normally a full
tie is drawn at the start of the second line. However, the suboption Ap+h causes the use of halfties
for the second part, which are flattened at their left-hand end, and require the special font mxsk
provided with the Type K postscript slur distribution. It may be cancelled with Ap-h .

The suboption l (e.g. Apl) activates some other tweaks and tweaking capabilities for
line-breaking Type K slurs and ties. It automatically tweaks the horizontal positions of the end
point of the first segment and the start of the second, uses a normal tie character for both
segments of a tie, and enables further tweaking of the horizontal and vertical positions of internal
endpoints on a case-by-case basis, using options in the initial slur or tie command (see
section 2.2.10, and the end of the fourth system in the example file barsant.pmx).

http://www.icking-music-archive.org/software/musixtex/musixtex.zip

2 ELEMENTS OF PMX 26

Another pair of suboptions to Ap affects the default curvature of Type-K postscript slurs.
Ap+c and Ap-c will respectively increase or decrease the default curvature of all slurs to the next
level in the sequence f, n, h, H, HH . (Here n stands for normal.) Several levels may be
traversed by repeating the suboption, e.g., Ap+c+c increases the default curvature by two levels. If
you try to go outside the allowable range, a warning will be issued, the curvature will be set to f

or HH , and processing will continue. See section 2.2.8 for further details.
If your score contains Type K slurs and if you use a program such as dviselec to extract

single pages from a .dvi file, you should use the suboption h (e.g. Aph) . This will cause the
header file psslurs.pro to be written into the postscript file at the top of of every page.

Vertical rest positioning in keyboard scores. The option AK activates special rules for 2.6
vertical positioning of rests in two-voice staves. By way of background, without this option, rests
in two-voice staves have default positions based on a simple rule that is not context-sensitive:
those in the lower voice (the one before //) are 4\internotes below their single-voice default
positions, and those in the upper line are 2\internotes above the single-voice default. In
contrast, the option AK invokes a set of context-sensitive rules to set the default position. The
baseline rule is to align the rest in a horizontal line with the next following note in the same bar.
If there is no following note in the bar, then it is aligned with the next prior note. If there are
simulataneous rests in both voices, the old rule is applied. When the AK option is in force, it only
affects places where there are two voices in a staff. It may be toggled on and off at the beginning
of any input block, using just AK. When the option is in effect, any user-defined tweaks on the
height of a rest will supersede the option for that particular rest, i.e., the tweak will be applied
relative to the single-voice default position. When AK is in effect, the option L in a rest command
will cause the vertical position of that rest to be based on the preceding note, rather than the
following one as is the default.

Names of PMX files for parts. The option N to the A command allows you to specify
arbitrary names for the part files generated by scor2prt. Follow AN with the part number and the
new file base name in double quotes. Immediately follow this with any number of additional part
numbers and alternate file base names in quotes. When part files are generated, .pmx will be
appended to the requested base name.

Gapped bracket for nonbeamed xtuplets. Non-beamed xtuplets will normally be
printed with a bracket above or below, and a number above or below that. If you would like this
number instead to be positioned within a gap in the bracket itself, enter AT .You must have
tuplet.tex available to your TEX processor. If missing, this file can be found here.

“Include” file. PMX commands in an external file can be included at the start of any
input block by designating the file as a normal include file, using the command AR[filename] . See
section 2.7 for details.

Positioning printed pages. For printing on letter or a4 paper, the command Acl or Ac4 2.7
will set the margins of the printed area so it will be properly centered with no further
adjustments needed when running dvips.

2.3.9 Extra hardspace, horizontal shifts

Despite the author’s best intentions to relieve you of the chore of adjusting any horizontal spacing
by hand, there may be some occasions where you will want to do it. A command starting with X

initiates one of two types of horizontal adjustment: A shift moves one or more characters but does
not affect any other spacing anywhere; a hardspace inserts a fixed amount of space at a particular
time and affects the horizontal positions of everything in all staves in the system. If the command
includes S, it is a single shift and affects only the next note or rest. If it includes a : it either
starts or terminates a group shift. All X commands except group shift terminations must include a
decimal number for the size of the offset in notehead widths. If the number is immediately
followed by p, then the number represents points, otherwise, notehead widths. If there is no such

http://www.icking-music-archive.org/software/musixtex/musixtex.zip

2 ELEMENTS OF PMX 27

number but there is a : the command signals a group shift termination. Group-shift commands
must occur in start/terminate pairs, and group shifts cannot extend across a bar line.

An X command containing neither S nor : is automatically a hardspace.
Because horizontal spacing in parts will usually differ from that in the score, by default the

hardspace command will not be copied into parts by scor2prt; however the shift commands will
be copied. These behaviors can be overridden using the methods to be described in section 3,
Alternatively, to help keep PMX score files neat and readable, the character B can be used
within the X command to signify that it applies to both score and part, or P for part only.

2.3.10 Minimum spacing between notes in crowded systems

PMX does some special, complex analysis to adjust horizontal spacing in crowded systems. By
default, the minimum space between consecutive noteheads is 0.3 notehead widths. In very special
situations you may want to change 0.3 to some other fraction. To do so, enter W. (decimal point
is required) followed by 1-9 to represent the number of tenths of a notehead width to be used as
the minimum spacing. Use of this option is demonstrated in the example file barsant.pmx.

2.3.11 Page size

The default page size is 740 by 524 pt (10.3 by 7.3 in). To change the height or width, use the
special commands h[n][u] or w[n][u] at the beginning of the first input block. Here n is a decimal
number for the new dimension and u defines the units; i for inches, m for millimeters, and p or
nothing for points. This command can be used together with %% or %! (see section 3) to give the
parts made by scor2prt different page sizes than the parent score.

2.3.12 Line, page, and movement breaks

It is possible to force line, page, or movement breaks anywhere. For a line break, just enter L[n] at
the start of an input block (in the first voice only), and the n-th system will start there. To start
page m at line n, enter L[n]P[m]. You can’t force a page break without first forcing a line break.

To force a movement break, you must first force a line break as above, then enter M. If a page
break also occurs here, the P must precede the M. Options following M are +[integer] to insert
vertical space in \internotes before the break, i[decimal number] to reset the first-line
indentation as a fraction of the line width, and c to continue bar numbering rather than resetting
the bar number to 0. Also, to change the number of instruments, enter n[integer], then the
number of each instrument in their new order, then a clef-designating character for each staff of
each instrument. (An instrument’s number is simply its position in the original sequence.) There
can never be more than the original number of instruments. In this instance, two-digit instrument
numbers must be preceded with : (colon). If you want to start with some number of instruments
and later increase it, you’ll need to insert a dummy page at the beginning with the full set of
instruments, then start the second page with a movement break and decrease the number there.

Another option after M is r+ or r-, which either forces or suppresses reprinting the
instrument names. The default is to print them if the number of instruments changes, but
otherwise not.

Immediately after a movement break, any desired meter changes, key changes, or text can be
entered in the normal way.

2.3.13 Fractional bars

Often if a piece starts with a pickup, the last bar may not be complete. In such cases, it is usually
possible to place the last bar in an input block by itself, headed by a blind meter change. For

2 ELEMENTS OF PMX 28

example, if the meter had been 4/4 and there was a quarter note pickup, leaving 3 beats in the
last bar, the last bar might be coded m3400 cd24 /.

2.3.14 Stem direction of bass notes

By default PMX makes stems go up for middle-line D’s in bass clef, but down for notes on the
middle line of all other clefs. If you want middle-line bass-clef notes also to have downward stems
by default, enter a B near the beginning of the file.

2.4 Putting TEX Commands into the PMX File

There are five ways to enter TEX commands into the .pmx file. Four of them are in-line, where
the commands are entered directly; the fifth is by way of an external file.

The four categories of in-line TEX strings differ mainly in where they will appear in the .tex
file. (A TEX string consists of a starting character, a sequence of TEX commands, and a terminal
character). In the .pmx file, only type 4 TEX strings may wrap over line breaks. All in-line TEX
must adhere to the 128-character limit per line, but each line can have more than one TEX
command. Type 1 begins with a single \ and will appear in the .tex file right before the
TEX command for the next note or rest in the .pmx file. Multiple type 1 strings associated with
the same note or rest are allowed, although the total length may not exceed 128 characters (so
there is generally no reason not to combine all TEX commands for a single note into a single type
1 string).

A type 2 string begins with \\ and will appear near the top of the .tex file, right before
\startmuflex, regardless of where it appears in the .pmx file. A type 3 string starts with \\\ and
will appear right before the \xbar or \alaligne at the beginning of the current input block,
before the first barline of the block. While individual type 2 and 3 strings may not wrap over line
breaks in the .pmx file, strings of like type on consecutive lines will appear together in the .tex

file. Types 1, 2, and 3 strings must end with \ (backslash-space). This means that they may not
contain the TEX macro \ (backslash-space). Finally, each type 2 or 3 string should be isolated on
a line of its own, and should be started in column 1.

Type four permits multiple lines of arbitrary text to be entered at the top of the .pmx file;
they will be transferred verbatim to the top of the .tex file. Type four is initiated with --- alone
as the top line of the .pmx file. Then follows any text on any number of lines, until the next line
starting with --- terminates the block to be transferred.

The only other distinction among the types of in-line TEX strings arises when scor2prt is
used to make separate parts (see section 3): types 2-4 will be copied into all parts, while type 1
only goes into its original part.

If you should want to enter a type-1 (note-based) string longer than 128 characters, you
could use a series of type-2 or -3 strings to define a TEX macro containing the desired commands.

PMX provides one further option for entering an unlimited set of TEX commands just
before \startmuflex, and before any Type 2 in-line TEX strings. Simply put the commands into
a text file named [basename].mod in the texinput directory. It will then automatically be entered
with an \input command. This feature is retained mainly for backward compatibility; it has
been essentially replaced by the various options for in-line TEX strings.

2.5 Figured Bass

Figure commands are entered after their associated note commands. They only work in the first
(lowest) voice, and in any one other voice. Enter the characters as they would appear from top to 2.6
bottom, and as you might pronounce them, e.g., 64 or 73. Flats here are - (minus), sharps are #,
and naturals n, before the number (if there is a number) (notice the characters are different here

2 ELEMENTS OF PMX 29

than in notes). So for example sharp third is #3, just a sharp is #, six (over) flat five is 6-5, and
sharp six (over) 4 is #64. In addition to the symbols just described, the following special symbols
are available: 2, 4, 5, 6, 9 . To use them, you must have the font cmrj in your TEX system, and 2.6
then just put an s after the number.

The program positions all the figures for each system below the lowest staff of that system,
with their tops aligned, and just low enough to clear the lowest beam, notehead, or stem that
could interfere. If you would like to change the vertical alignment for the remainder of the staff
starting at a figure after the first, append v[n], where n is an integer representing the vertical shift 2.71
in \internotes, which may have a minus sign.

If you want a figure to align horizontally in the second tier, insert the placeholder figure
(underscore) before the one you want lowered. This is equivalent to lowering the figure stack by 4
\internotes. If you want to raise the entire stack by an integral number of \internotes, append 2.6
+ and the number. This can be combined with the placeholder figure to provide full control over
the vertical position of the stack.

Sometimes you may need to enter a figure when there’s no bass note sounding. To do this,
just after the most recent bass note enter x, followed by a two single digits (the first is a repeat
count; the second a time value, i.e., 2,4,8,1, or 3), immediately followed by a figure symbol as
defined in the previous paragraph. This will offset the figure from the associated note by the
specified time value. For example, if the lowest voice contained c03 x3465, there would be a
whole-note c, and 3 quarter notes later a figure 65 below the staff.

There is also a continuation command, a zero followed immediately by another unsigned
number. This produces a horizontal line under the bass note, starting just to the left and
extending to the right by the given number of \noteskips. The height and length of the line are
set by the current note’s level and \noteskip respectively. These can be mixed in with other
figures to produce vertical stacks. If another figure follows in the same command, use : as a
separator. If \noteskip changes or a note drops below the starting level before the line ends, it is
possible to trick PMX by entering separate 0[n] commands under each consecutive note;
PMX will automagically join them together at the same height (thanks to Werner Icking for this
idea).

If there are figured bass commands in a .pmx file but you want them to be ignored, then
enter the command F at the beginning of the body of the file. This feature would most often be
used in the form %1F (see section 3), which makes a separate bass part with no figures.

Figured bass commands will not be altered in any way under transposition. There is no
universal set of interpretations of figured bass symbols, so no automatic transposition is possible.

2.6 Macros

A PMX macro is a single command that stands literally for any any string of characters that
may occur in the input file (sorry, no variables). It may be useful if you need to repeat the same
string later. There is no practical length limit.

To record a macro, type MRn where n is between 1 and 20. Everything you then type will be
processed normally as well as stored, until you enter the command M. The next time you need to
enter the same string, just type MPn to play back the macro.

To just save a macro without having PMX process it as you enter it, start it with MSn.
Macros can be redefined at will. PMX will print a warning whenever this occurs.
If you use macros and want to make separate parts, some care is necessary. Scor2prt will only

transfer MR macros into the part where they originated, but will transfer MS macros into all parts.

2.7 Include Files

Include files are separate text files containing arbitrary (but contextually appropriate) sequences

http://www.icking-music-archive.org/software/musixtex/add-ons/figbas.zip

3 MAKING PARTS FROM A SCORE 30

of valid PMX commands. By using the techniques described in this section, the commands in an
include file can be inserted at any desired place in the virtual PMX file that the code processes.
They will always be syntax-checked.

There are two types of include files, global and normal. There can only be one global include
file and it must be named pmx.mod. If activated, its contents will always be inserted right after
the setup data. To activate it, two conditions must be met: (1) an environment variable
PMXMODDIR must be defined to contain a valid path, ending with / or \ ; (2) a file named pmx.mod

must be present in the directory so defined. If PMXMODDIR is not set, or if it is defined but there is
no file pmx.mod, then processing will proceed as usual.

Normal include files can have any name and do not require any environment variable to be
set. They are activated by the PMX command AR[filename] , placed in the .pmx file at the
location where the included lines are to go. It will generally only make sense to place this
command at the beginning of an input block. PMX will first check for the file as pointed to by
[filename], which may contain a complete or partial pathname preceding the actual file name. If
[filename] is not found, then PMX will look for %PMXMODDIR[filename], i.e., it will check the
directory defined by PMXMODDIR if PMXMODDIR has been set. However, it is not necessary to define
PMXMODDIR to use a normal include file. There may be any number of normal include files. The
same file may be used multiple times. Include files cannot contain references to other include files
via the AR command; if you try to do that your computer will explode. The following information
regarding all activated include files will be printed both to the screen and to the .pml file: notice
of opening or closing, echo of the contents, error messages pertaining to syntax errors in the
included PMX commands, and an error message if PMX cannot find a referenced normal
include file. In the latter two cases PMX will stop.

2.8 Batch Processing

Due to the number of different programs that must be run in sequence to produce a printed sheet
of music with the MusiXTEX system, most users prefer to use a batch script to control the
process. Since batch commands are platform-dependent we will not provide examples here, but
will mention several PMX features that can facilitate batch processing.

First, whenever pmxab terminates due to a syntax error, the exit code is set to 1. There are
various ways of detecting this with batch commands, then acting accordingly. Second, pmxab
always writes a file pmxaerr.dat containing a single number: 0 if it exited normally, otherwise the
line number in the .pmx file where the syntax error was. With advanced batch programming
techniques, this file can be opened and read, and if there was an input error, a text editor can be
opened and the input point placed on the line with the error.

There have been several requests to allow PMX to keep running even after it detects an
input error. This has not been done because in many cases any error messages after the first one
would be meaningless, or worse, uncorrected errors could cause crashes. In any event, all the
output from pmxab will be stored in the log file [jobname].pml.

3 Making Parts from a Score

Separate parts can be made by running scor2prt and entering the basename when prompted. The
program will create noinst separate .pmx files, one for each instrument. By default the files will
be named [basename][n].pmx, where [n] is the sequential position of the instrument. If desired,
part file names can be customized with AN as described in section 2.3.8.

In this section we describe how to control the layout of the parts separately from that of the
score, but by using commands that are placed in the .pmx file for the score. This eliminates the

3 MAKING PARTS FROM A SCORE 31

need for ever editing the .pmx files for the parts separately. You can make all corrections in the
file for the score, and then re-run scor2prt.

Normally all lines starting with % in the parent .pmx are transferred into all the parts.
However, if a line has %% in columns 1-2, both it and the following line will be ignored when
making parts. If the ignored line contains only h , l , Tc , Ti , or Tc to start, then one additional
line will be ignored.

Conversely, if a line begins with %! then it will be ignored as usual in creating the parent
.tex file, but after stripping the first 2 characters the rest will be put in the .pmx file for all the
parts.

To enter a line into the score file that is only to be transferred to one part, begin the line
with %h, where h is an extended hexadecimal digit representing the part number from 1 to 24 2.6
(1,2,...,9,a,b,c,...,n,o). The first two characters will then be stripped and the rest
transferred to the desired part. For example, to force a line break to system 15 and a page break
to page 2 in part 11 only, enter %bL15P2. The use of the extended hex digits a-o creates a
potential incompatibility with prior versions. To minimize this, the character after “%” will only
be interpreted as a part number if it represents a number less than or equal to noinst; otherwise
the entire line will be treated as an ordinary comment and transferred to all parts as a comment.

Although only permitted in the first voice in the score, the following commands with all
their options will automatically be copied into all parts (unless the preceding line has %%): m, V,

R, A, h, w, K. Literal TEX strings of types 2-4 will also be copied into all parts, while type 1
will only go into its original part.

User-defined hardspaces (X without :) are handled specially. By default they are not copied
into parts. There are two ways to circumvent this. One way to insert hardspace x into part n is to
place in the score, on a line of its own, the command %[n]X[x] . The other way is with options in
the X command in the score: B causes the hardspace to be used in both score and parts; P puts it
into the part but not the score.

Instrument-wise transposition commands (see section 2.3.4) are also handled specially. When 2.7
scor2prt encounters Ki[n] (for instrument n) in the score, it transfers the transposition
information (transposition amount and key signature) for that instrument into the corresponding
part, replacing Ki by K and keeping only the information for instrument n.

Lateral shifts (X[. . .]:) will be handled normally, staying with their original voice.
By default the total number of systems in each part will be the same as in the score. If you

want to override this, there is a command S[n] (where n is the desired number of systems), which
can only appear at the beginning of the first input block. This can be used after %! to affect all
the parts, or after %[h] to affect just part h. Scor2prt will also compute how many pages it thinks
each part should have, and enter that in the startup data for that part. If you wish to override
that, then in the .pmx file for the score, insert for example %3S14P2 to force the third part to have
14 systems and 2 pages (you cannot override the number of pages without first overriding the
number of systems).

A musicsize of 20 is the default in all parts. This may be overridden with the option m in
the command S; e.g., %2S15m16 .

As already noted, a P command for page numbering in the parent file is ignored when
making parts. To initiate page numbering in the parts, use for example %!P anywhere within the
PMX code representing the first page of the parts (from TEX’s standpoint the command must
occur between the beginning and end of the page on which the numbering is to begin). It will
often be useful in this case to use the option c , which by default causes the instrument name to
be centered in small type at the top of every page after the first.

Note the distinctions among the various usages of P: as an option with S, it sets the total
number of pages in a part; as an option with L, it forces a page break; and as a command on its
own, it controls page numbering and centered headings.

4 MAKING MIDI FILES 32

MIDI commands, i.e., those starting with I, will never be copied into parts, unless they are
in a special comment line as just described.

One function of scor2prt is to condense consecutive bars of rest into a single group of special
printed characters with a number above it. The command rm defines such a multi-bar rest as
described in section 2.2.3. Scor2prt will automatically insert rm commands into the .pmx files for
the parts where appropriate. However, for this feature to work, the first full-bar rest in the
sequence must have its duration explicitly defined in the parent .pmx file, either with a digit or
with p. I.e., the feature will not work if the first rest in the sequence inherits its duration from the
previous note.

Using the special PMX commands listed in this section, augmented where needed with
literal TEX commands, it is possible to store all the information for both the score and the parts
in a single .pmx file. This greatly simplifies the editing process, since both the score and the part
can be corrected at once, and parts need not be re-edited each time they are regenerated from the
score.

4 Making MIDI Files

PMX has an elementary capability to create MIDI files. It is intended mainly to aid in editing
scores, so it does not have advanced facilities one would want for making musically satisfying
sound files.

As of version 2.6, PMX can only generate MIDI files for scores with 15 or fewer voices. 2.6
Entering the command I before any notes have been entered will cause a MIDI file

[jobname].mid to be generated in the current directory. Options may follow, without spaces.
They are defined in the following paragraphs. Multiple options can be combined in one I
command. I commands can appear later in the file as well, but only at the start of an input
block. Sometimes the order of the options matters, determining for example whether or not a
user-defined pause is included inside a macro block.

tx sets the tempo to x quarter notes per minute. Default is 96. You can change tempos as
often as you like, but only at the start of an input block (as with all MIDI commands).

ii1i2...in assigns MIDI instruments i1,i2,...,in to the respective PMX instruments. The
default is harpsichord, of course. If you use this option, you must specify all instruments. Each in
is either a 2-letter abbreviation or an integer between 1 and 255. Acceptable abbreviations are
listed below. Numbers and pairs of letters may be mixed, but consecutive pairs of numbers must
be separated by : (colon) . This option can only be exercised once per file. Also, the number of
instruments cannot change during a piece.

The number of arguments following suboption i, as well as the next three described 2.7
suboptions, must in fact equal the number of instruments. Before version 2.7, it was the number
of staves (despite the incorrect description in the manual!) These numbers may differ and this
creates a backward incompatibility. Hoping this won’t cause too much distress, I’ve enhanced the
real-time error messages.

vi1:i2:...:in assigns MIDI velocities to each instrument. The colons are required. Values may
range from 1 to 127. The default is 127.

bi1:i2:...:in assigns MIDI balances to each instrument. The colons are required. Values may
range from 1 to 128. The default value is 64, which represents the center. Smaller numbers favor
the left stereo channel; larger ones the right.

T allows transposing any instrument by a selected number of steps (\internotes). It must 2.7
be followed by exactly noinst signed integers representing the amount of transposition for each
instrument in order. In practice it is useful in two situations (1) To transpose a MIDI output up
or down by one octave (7 \internotes); and (2) when a transposing instrument is printed in the
transposed key in the score after having issued Ki, to undo the transposition in the MIDI.

5 LIMITS 33

M initiates a macro operation. This is used for repeats, da capo’s, etc. Macros must have ID
numbers between 1 and 20. Operations are start record macro i: MRi ; end recording: M ; and
playback (insert) macro i: MPi . Only one macro can be active at a time, recording or playing but
not both. If you try nesting or overlapping macros, your computer will become psychotic.

px inserts a pause of x quarter notes. Decimals are allowed, but will be rounded to the
nearest sixteenth note.

gi sets the MIDI gap to i MIDI clock tics. This is a silence inserted at the end of every note,
while decreasing the sounding duration by the same amount. The default is 10, which is 2/3 of a
64th note.

The MIDI module does not recognize graces, ornaments, repeats, voltas, or segnos. The only
ties that are recognized are those using s or (alone, with no explicit ID number. Key signatures,
time signatures (meter) and instrument names will be written into the MIDI file, the latter as
track names. This will have no effect whatsoever on audible output but will affect on-screen
appearance of some MIDI file players and editors. Location of the PMX key-change and
meter-change commands relative to MIDI macro delimiters in the source will affect (in the
obvious way) how these data are passed to such programs.

The MIDI file generator does not yet support changing the number of instruments in
midstream. Doing so will cause unpredictable results.

The instruments are a subset of “The General MIDI Instrument Specification.” Of course
how they sound depends on your hardware and software. Instruments not listed below can still be
used but must be specified by number. The numbers listed here are from the 1-128 range; when
passed to the MIDI file they are reduced by one.

pi Acoustic Grand Piano (1)
rh Rhodes Piano (5)
ha Harpsichord (7)
ct Clavinet (8)
ma Marimba (13)
or Church Organ (20)
gu Acoustic Nylon Guitar (25)
ab Acoustic Bass (33)
vl Violin (41)

va Viola (42)
vc Cello (43)
cb Contrabass (44)
vo Synth Voice (55)
tr Trumpet (57)
tb Trombone (58)
tu Tuba (59)
fr French Horn (61)
so Soprano Sax (65)

al Alto Sax (66)
te Tenor Sax (67)
bs Baritone Sax (68)
ob Oboe (69)
ba Bassoon (71)
cl Clarinet (72)
fl Flute (74)
re Recorder (75)

5 Limits

For simplicity in writing the program, PMX has numerous variables with fixed dimensions. In
most cases there are no checks against these limits (hey, I’ve got more important things to
program), so occasionally there may be hangups due to exceeding a dimension. Any of these can
potentially be increased by making a request via the mailing list. However, before making such a
request, try working around the problem by breaking the input into smaller blocks.

5.1 Limits on quantities that a user can control

(The user can control the number of these items, but cannot control the limit on the maximum
number of them.)

128 characters per input line.
24 staves. 2.6
2 voices per staff.
24 voices per system. 2.6
125 systems.

6 CLOSING NOTES 34

600 bars.
40 forced line breaks.
10 forced page breaks.
18 key changes.
75 pages. 2.78
600 notes per input block. 2.6
15 bars per input block.
101 slurs per input block.
74 figures (figured bass) per input block.
37 grace note groups per input block.
74 notes in grace note groups per input block.
52 literal TEX strings per input block.
6 voltas per input block.
24 trills per input block. 2.6
62 chordal notes (non-spacing) per input block.
8 beams per voice per bar.
40 forced beams per voice per input block.
10 clef changes per voice per input block.
24 notes per beam.
24 notes per xtuplet.
41 text-dynamic strings per input block.
9600 lines in input file 2.78

5.2 Limits not under immediate user control

131072 bytes in the entire input file 2.78
20 \notes groups per bar.
20 inserted standard anti-collision spaces (not xtuplet or end-of-bar) per bar.
20 inserted anti-collision spaces within xtuplets per bar.
19 inserted anti-collision end-of-bar hardspaces per system.
83 inserted anti-collision end-of-bar hardspaces.
400 inserted standard anti-collision spaces per system.
100 inserted anti-collision spaces within xtuplets per system.
1000 inserted standard anti-collision spaces.
200 inserted anti-collision spaces within xtuplets.
24576 bytes of MIDI output data per voice.

6 Closing Notes

6.1 About the Example Files

most.pmx contains examples of most of the PMX commands, and a few programming tricks,
including examples in the last line of beam groups whose notes vary widely in pitch. The printed
output displays the PMX commands near to the resulting typeset characters. It is more useful to
look at the printed output rather than the source file, since the file is littered with in-line
TEX needed to output the text strings representing the PMX commands. WARNING: Do not
try to play this music; it could be hazardous.

barsant.pmx contains the first movement of a recorder sonata by the Italian Francesco
Barsanti (1690-1772). It demonstrates many of PMX’s strong points in a “battlefield” situation:
figured bass, complex beaming patterns, xtuplets, and automatically adjusted horizontal and
vertical spacing in crowded scores. In fact, this single-page score pushes the limits of vertical and

6 CLOSING NOTES 35

horizontal crowding. To get the final result, it makes subtle adjustments using various available
options: Ae for equal space between systems, AI1.1 to increase the vertical space between staves
in a system, Apl to activate postscript slurs and special treatment of line-breaking slurs/ties (note
slur at end of fourth system), and W.5 to increase minimum space between noteheads so the 64th
notes don’t touch each other. This is also a good score to try making parts with scor2prt. A
special command %2S9 is used to increase the number of systems in the recorder part.

mwalmnd.pmx is an Allemand for harpsichord by the German Matthias Weckmann
(1616-1674). It uses many techniques peculiar to keyboard scores, most notably two voices per
staff.

netsoos.pmx is an example with lyrics, including several inline TEX commands to enhance 2.73
the layout.

staffcrossall.pmx contains examples of staff-crossing chords. Some are single-stemmed, 2.74
some are beamed non-xtuplets, and finally beamed xtuplets.

6.2 A Benign Bug

When TEX’ing the output of PMX you will usually get an Underfull \vbox message at the end
of each page. This is due to my using \eject at the end of every page, which automatically
spaces the systems vertically without having to fiddle with \staffbotmarg. As far as I know, the
warning is benign, and may be ignored.

6.3 Where to Get Help

The main home of PMX on the internet is the software section of the
Werner Icking Music Archive. This site also links to a mailing list devoted to MusiXTEX and
related programs including PMX . The denizens of this list are always willing to answer
questions about any aspect of the software. New users are strongly advised to take advantage of
this resource.

6.4 Acknowledgments

To Daniel Taupin, Ross Mitchell, and Andreas Egler for creating MusiXTEX; to Olivier Clary for
suggesting a crucial modification in the note-entry scheme; to my colleague John DiPol (a
non-musician!) for the idea of using binary masks to define beam groupings; to Joel Hunsberger
for unraveling some deep MusiXTEX tangles; to Dirk Laurie for making PMX accessible to vocal
music by creating \pmxlyr and M-Tx; to Stanislav Kneifl and Hiroaki Morimoto for developing
the postscript slur packages; to Christian Mondrup, Andre Van Ryckeghem, Christof Biebricher,
Joerg Anders, Olivier Vogel, and other denizens of the TeX-music mailing list for first-class
bug-finding and support in responding to queries about PMX on the mailing list; to Luigi
Cataldi, Olivier Vogel, Christof Biebricher, and Cornelius Noack for producing translated and
enhanced PMX tutorials; and to Bob Tennent for maintaining the software section of the web
site. Finally, I want to mention again the invaluable contributions by Werner Icking: his
exhaustive beta testing, uncanny bug-finding, continuing encouragement, and promotion of
PMX right up until his sudden and premature departure from this earthly realm.

http://icking-music-archive.org

	Introduction
	Conventions for This Manual
	Setup
	Basic Operation, by Example

	Elements of PMX
	Setup Data in the Input File
	Structure of the Body of the Input File
	Notes
	2-note tremolos
	Rests
	Chords
	Grace notes
	Ornaments
	Editorial accidentals
	Slurs
	Ties
	Line-breaking Type K slurs and ties
	Dynamics
	Beams
	Clefs
	Arpeggios
	Lyrics

	Commands That Affect All Voices
	Repeats, double bars, forced single bars
	Voltas (first and second endings)
	Meter changes
	Fundamentals of key changes and transposition
	More on transposition; ``transposing'' instruments and example files
	Text
	Page numbering, centered header text
	Overriding certain defaults, or getting the most from PMX
	Extra hardspace, horizontal shifts
	Minimum spacing between notes in crowded systems
	Page size
	Line, page, and movement breaks
	Fractional bars
	Stem direction of bass notes

	Putting TeX Commands into the PMX File
	Figured Bass
	Macros
	Include Files
	Batch Processing

	Making Parts from a Score
	Making MIDI Files
	Limits
	Limits on quantities that a user can control
	Limits not under immediate user control

	Closing Notes
	About the Example Files
	A Benign Bug
	Where to Get Help
	Acknowledgments

