PMX – a Preprocessor for MusiXTEX

Version 2.4 – June 2002

Don Simons
Dr. Don’s PC and Harpsichord Emporium
Redondo Beach, California, USA.
dsimons@adelphia.net

Contents

1 Introduction ... 3
 Conventions for This Manual 3
 Setup .. 3
 Basic Operation, by Example 4

2 Elements of PMX ... 4
 2.1 Setup Data in the Input File 4
 2.2 Structure of the Body of the Input File 6

 Notes .. 7
 Rests .. 9
 Chords .. 9
 Grace notes .. 10
 Ornaments ... 10
 Editorial accidentals ... 11
 Slurs ... 11
 Ties .. 12
 Dynamics ... 12
 Beams .. 13
 Clefs .. 14
 Arpeggios .. 14

2.3 Commands That Affect All Voices 14
 Repeats, double bars, forced single bars 14
 Voltas (first and second endings) 14
 Meter changes .. 15
 Transposition and key changes 15
 Text .. 15
 Page numbering, centered header text 15
 Overriding certain defaults for accidentals, dot positions, vertical spacing, slurs ... 16
 Extra hardspace, horizontal shifts 17
 Minimum spacing between notes in crowded systems .. 17
 Page size .. 17
 Line, page, and movement breaks 17
 Fractional bars ... 18
 Stem direction of bass notes 18
Dedication

The MusiXTeX community was stunned by the sudden death of Werner Icking on February 8, 2001. He had been a benevolent patriarch, touching many of us not only with his technical savvy and gentle guidance, but also his genuine kindness and generosity. His spirit runs deep through all of PMX. His encouragement fueled its development from the very beginning up to its current state. Most of the enhancements have been his proposals, including one he made on what turned out to be his last day. Werner, my friend, I dedicate this work to you and your memory.
1 Introduction

PMX is a preprocessor for MusiXTEX. To use it to its full benefit you should have installed MusiXTEX Version 1.00 or higher, and of any one of the many available versions of **\TeX**. The goal of **PMX** is to facilitate the efficient typesetting of scores and parts that have an almost professional appearance. It can do all the work involved in setting up `notes-\enotes` groupings, selecting groups of notes to be beamed, defining beam heights and slopes, spreading the entire piece evenly over specified numbers of systems and pages, and inserting extra spaces where needed to make room for accidentals, flags, dots, and new clefs. The input language for **PMX** is much simpler than MusiXTEX. You can enter note values and rests from 64ths to double whole notes (breves), ornaments, slurs, and limited text strings. Every voice in every bar must have exactly the correct number of beats in the current meter, but you may change the meter at the beginning of any measure, with or without printing the new time signature. Before making a **\TeX** file, **PMX** checks these timings and other aspects of the input. **PMX** has special features for dealing with baroque chamber music, including the ability to notate figured bass below the bottom staff in each system. If **PMX** hasn’t yet learned to do something you want to do, you can usually work around the problem by inserting literal **\TeX** strings in the **PMX** input file.

You can automatically create parts from a score using **scor2prt**. This auxiliary program generates a set of `.pmx` input files, one for each part, from a single `.pmx` file for the score. You can control the appearance of the parts with special commands in the main file, thereby making it possible to include within a single input file all the information that defines the score and the individual parts.

The native language of **PMX** is FORTRAN and its home port is DOS. The basic distribution contains the FORTRAN sources, and binaries that will run in a DOS window on a PC with WINDOWS95 or higher. Availability of ready-made distributions for other operating systems depends on volunteer efforts; they will be posted as submitted to the software section of the Werner Icking Archive at http://icking-music-archive/software/indexmt6.html.

Conventions for This Manual

Hey, this is boring stuff, but if you take a minute to understand the typographic conventions and a little jargon, it may avoid some confusion down the road.

The typewriter typeface always indicates verbatim text as it would be input to a computer. This includes file names, MusiXTEX tokens, and **PMX** commands, e.g., `barsant.pmx`, `\internote`, `c44`.

Bold is used for program names (e.g., `pmxab`), or when applied to a single letter, to relate a **PMX** command to its meaning (e.g., “e signifies a left shift”).

Italics may mean several different things depending on the context: simple emphasis, or the first appearance of jargon (buzz-words that need to be explicitly defined), or finally to represent input variables for which some verbatim text would need to be substituted. In the latter case the variable will be surrounded by square brackets, e.g., `[basename]`, but the brackets are not to be included with the substituted text.

Speaking of jargon, there are several special words that have very specific meanings here: A staff is one set of 5 lines (plural staves), a system is a group of staves, voice is the same as staff, and line of music refers to one of the one or two simultaneous allowable sequences of notes in a voice. Note that this definition of voice is a little unconventional, since a single voice may have more than one line of music.

Setup

This section describes the setup for the DOS version or for those compiling the FORTRAN source. Other versions should be accompanied by their own setup instructions.
After decompressing the distribution file pmx240.zip if necessary, you should have these files: pmx240.for, scor2prt.for, two DOS executables pmxab.exe and scor2prt.exe, several sample .pmx files, pmx.tex, ref240.tex (\TeX source for a command summary), pmx240.tex (\TeX source for this file), and PDF images of the latter two files. If necessary, compile the FORTRAN programs. I have tried to keep the source code as generic as possible, but minor modifications may be needed for FORTRAN-to-C translation and/or other compilers.

Once you have assembled a full set of files, put the executables somewhere in the path or in your working directory, pmx.tex into the texinput directory, and the sample .pmx files in your working directory (the one from which you will run \texttt{PMX}).

Basic Operation, by Example

Edit the 15th line of barsant.pmx to contain the path to the texinput directory; \texttt{PMX} will write the .tex file there. For example, if you want this to be the same as the working directory, type \\\. for DOS, or ./ for UNIX.

Execute \texttt{PMX} by typing pmxab barsant. Or, for backward compatibility, you may type pmxab <return> and you will be prompted for a jobname. pmxab will always generate two files in the working directory: barsant.pml is a log file, and pmxaerr.dat contains a single integer, 0 if the run was successful, otherwise the line number in the .pmx file of the fatal error (useful for batch processing). Also, on successful completion, barsant.tex will be placed in the path specified in the setup.

Now you are right where you would be after entering, debugging, and rough-editing the .tex file manually. To see the results, process barsant.tex just as you would for any MusiX\TeX file, running all three passes, and view the .dvi file. To make separate parts, run scor2prt by typing scor2prt barsant. The program will create a new .pmx file for each instrument, in this case barsant1.pmx and barsant2.pmx. You may then process these files like you did the original one to create separate parts.

2 Elements of PMX

2.1 Setup Data in the Input File

To see how the input file is put together, we’ll look at barsant.pmx. For reference, here are are the first few lines:

\begin{verbatim}
%----------------%
% barsant.pmx Revised 31 August 1997
%----------------%
% nv,noinst,mtrnuml,mtrdenl,mtrnmp,mtrdnp,xmtrnum0,isig,
% 2 2 4 4 0 6 0 0
% npages,nsyst,musicsize,fracindent
% 1 7 20 0.07
Basso
Recorder
bt
./
\end{verbatim}
The lines with % in column 1 are comments. Some special handling of comment lines will be discussed in the section on creating parts from a score. The rest of the lines in this example are the setup data.

Starting in the first non-comment line above,

nv (integer ≤ 12) is the total number of voices, or staves per system. [We will use the terms voice and staff (plural staves) interchangeably]. Each voice or staff may contain either one or two lines of music.

noinst (integer ≤ nv) is number of instruments. Each instrument has a unique name (see below), and any instrument with more than one voice will have its staves joined with a curly bracket. Usually there is only one voice per instrument and noinst=nv. There are two ways to assign more than one voice to one or more instruments. If only the first (lowest) instrument has more than one voice, such as in a score for piano and a solo instrument, simply make noinst<nv and any difference will show up in instrument 1, the bottom one in each system. For a more general distribution, put a minus sign in front of noinst, and follow noinst with the number of voices in each instrument in succession, separated by spaces. These numbers must add up to nv or your computer will explode. For a typical example of keyboard music, see mwalmnd.pmx, in which nv=2 and noinst=1, producing two staves per system with a curly bracket at the left.

The number of instruments can be changed as well after the start of the score, but only to a number less than the original one. See section 2.3 starting on page 17, which explains what to do if you want to start with a smaller number of instruments and later increase it.

mtrnuml is the logical numerator of the meter, or the number of beats per measure; mtrdenl the denominator. Please note the special considerations in the paragraph after the next. If mtrnuml is divisible by 2 or 3, beam grouping will be automatic; otherwise you will have to force all beams using [...] as described in subsection 2.2 on page 13.

mtrnmp and mtrdnp are the printed numerator and denominator. These determine the appearance of the meter in the printed output but have no effect on the internal timing analysis. If mtrnmp>0 then it and mtrdnp are printed literally as the numerator and denominator of the time signature. Please note the special considerations in the following paragraph. If mtrnmp<0, then the numerator is abs(mtrnmp) and the entire time signature will be printed with a vertical slash through it. If mtrnmp=0, then mtrdnp determines the printed meter as follows:

0 No meter is printed (blind meter change)
1, 2, 3, or 4 A single digit, between the 2nd and 4th lines
5 Cut time (alla breve)
6 Common time
7 Numerical 3 with a vertical slash

There are special considerations for n/16 and n/1 time signatures (where the latter "1" normally means a whole note). To get n/1 time, use 0 (zero) for mtrdenl and 1 for mtrdnp. To remember this rule, recall that the printed denominator is taken literally, while the logical denominator can always be represented by the same single digit used for the corresponding time value when entering ordinary notes (see section 2.2 starting on page 7). So for n/16 time, use 1 for mtrdenl and 16 for mtrdnp.

If the first bar is a partial bar containing a pickup, xmtrnum0 is the number of beats in it; otherwise set it to 0. It need not be an integer. The first bar is the only bar that can have a different number of beats than the current value of mtrnuml (Later we’ll see how to change the meter).

isig is the key signature, positive integer for sharps, negative for flats.

If npages>0, it is the number of pages and nsyst is the total number of systems in the entire piece. PMX will spread the entire piece horizontally over this number of systems, and vertically over npages pages. For proper vertical spacing there should be from about 9 to 16 staves per page. If you specify too many staves for the number pages, one or more staves will spill over onto an
extra sheet. If this happens it will only become obvious when you preview the \texttt{.dvi} file. However, with practice, you can spot the problem by watching the page numbers printed to the screen on the first pass through \TeX. The most common solution is either to increase \texttt{npages} or decrease \texttt{nsyst}.

If \texttt{npages} is set to 0, then \texttt{nsyst} is interpreted as the average number of measures per system. This is useful while building up a file a little at a time. \texttt{PMX} will calculate how many systems to use, and spread them over an appropriate number of pages.\texttt{musicsize} is either 20 or 16, the height of a staff in points. \texttt{fracindent} is the indentation of the first system from the left margin, expressed as a decimal fraction of the total line width.

Next come the names of the \texttt{noinst} instruments as you want them to appear within the indentation in the first system, one per line, starting with the bottom instrument. If you’ve set \texttt{fracindent}=0 and don’t want instrument names to appear, you must still leave \texttt{noinst} blank lines here. Next comes a single string of \texttt{nv} letters or numbers for the clefs, again starting with the bottom voice: \texttt{b}, \texttt{r}, \texttt{n}, \texttt{a}, \texttt{m}, \texttt{s}, \texttt{t}, \texttt{f} or digits 0-7 respectively for bass, baritone, \texttt{tenor}, alto, mezzo-soprano, soprano, treble, or \texttt{French} violin clef. The last line of setup data contains the path to the texinput directory, where you want the \texttt{tex} file to go when \texttt{PMX} creates it. The one in \texttt{barsant.pmx} \texttt{.}, \texttt{/}, represents the current directory in UNIX and some versions of DOS. The path must terminate with \texttt{/} or \texttt{\}.\texttt{2.2 Structure of the Body of the Input File}

The rest of the \texttt{.pmx} file is the body of the input. The basic unit of input from here on is called an \textit{input block} or just \textit{block}, each one representing an integral number of bars. If there is a pickup bar, i.e., if \texttt{xmtrnum0} > 0, it must be included in the first block together with the first full bar. (If you need to put the pickup in a separate block, for example at the start of a new movement, set the initial logical meter to fit the pickup bar, then after the pickup bar do a blind meter change as described in section 2.3, page 15)

There will usually be 4 to 8 bars in a block. 15 is the most allowed. It is good practice to separate the blocks with comment lines that state which bars are represented, as I’ve done in \texttt{barsant.pmx}. It is also advisable, although not required, to separate the bars with the symbol \texttt{|}. Its main functions are to provide visual separation in the input file, and to help isolate input errors: if you put one anywhere except at a bar-end, \texttt{pmxab} will stop and show you where it detected the timing error. Otherwise, with several minor exceptions, \texttt{|} has no effect.

At the start of each block there may be a few special symbols (described in section 2.3 starting on page 14). Next come the input data for the selected number of bars of the first (lowest in the system) line in the first staff, followed by either / to move to the next staff, or // to move to the next line of music on the same staff. Each new line of music should start on a new line in the input file, i.e., there should be no further data on the same input line after / or // . Continue entering other lines of music, each with exactly the same number of bars as the first, terminated by / or //, until the last (topmost in the system) ends with a / and the block is finished. Within a block every line must have the same number of bars, but every block needn’t have the same number of bars as other blocks. The number of lines in a voice can only be 1 or 2, and cannot change within a block, but may vary from block to block.

The data for each line of music in each voice are a sequence of symbols containing one or more adjacent characters. Symbols are separated from each other by spaces. The line-terminating symbols / and // should also naturally be preceded by a space.
2 ELEMENTS OF PMX

Notes

Symbols for notes always start with a lower-case letter and end at the first space. The first letter is the note name (a-g). The rest of the characters can be in any order with only a few restrictions. The first digit defines the basic time value of the note: 9, 0, 2, 4, 8, 1, 3 or 6 respectively for double-whole, whole, half, quarter, eighth, sixteenth, thirty-second, and sixty-fourth notes. The second digit sets the octave (for reference, octave 4 runs from middle C to the B above). Certain letters may appear after the initial one: d for dot; dd for double dot; f, n, or s for flat, natural, or sharp (repeat the letter immediately for a double); u or l, which force the stem direction of any un-beamed note; e or r to shift the notehead left or right by its own width; and a (for alone) which inhibits beaming for this note (or, if the first note of an xtuplet, for the entire xtuplet). A single accidental may be followed by c to make it cautionary, i.e., surround it with parentheses. Alternatively, it may also be followed by i to suppress typesetting but still have the MIDI processor honor the accidental. Other characters allowed in note symbols are +, -, .(period), ,(comma), x, and several special characters following x, all to be described below. Between the first letter and the end or x if present, non-digits can be in any order with respect to each other and to the digits, with minor exceptions involving shifting dots and accidentals.

To move a dot from its default location, simply follow the d with one or two decimal numbers, each preceeded by + or -. The first is the vertical shift in \internotes, the second, the horizontal shift in notehead widths.

Accidentals can be shifted too. One way is to enter + or - right after the accidental character, then an integer for the vertical shift, then another + or - followed by the horizontal shift in notehead widths. If you use this method, you must enter both numbers. Or, to just shift horizontally, use < or > followed by the shift in notehead widths. When shifting a sharp to avoid another sharp, a left shift of 0.85 is usually best. When shifting a flat to avoid a flat above it, a left shift of 0.3 is suggested. In chords where all the notes are in the same line of music, PMX will automatically shift accidentals if required. This will be disabled for the current chord if any user-defined accidental shifts are entered, unless A is entered along with the shift, e.g., zcsA<.5. In that case the user-defined shift will be added to the PMX-computed one. Another option that affects accidental positioning in chords is A0, entered in the main note symbol of a chord. It will force the accidentals in that chord will be posted in the order they come in the source file (starting with the main note), each one as far to the right as it will go without crashing into a notehead, stem, or another accidental.

Dots and accidentals always have to be entered when and if a note calls for them. i.e., they are never carried over from previous notes. On the other hand, the octave only needs to be entered if the note is more than a fourth away from the most recent note in the same voice. This feature lets you go for long stretches in a voice before needing to enter the octave. An alternate way to jump more than a fourth but less than a twelfth is to type + or -. In other words, these symbols mean to put the note an octave higher or lower than it otherwise would have gone. Two +’s will raise the pitch two octaves above what it otherwise would have been, and so forth. The basic time value is also carried over from the past if it is not re-entered, except for the first note or rest in each line of music in an input block, for which it must be entered. Therefore, when the melody jumps more than a 4th, using + or - is often more convenient than using a digit. This is because in order to use the digit, you must first enter the basic time value whether it changes or not.

For example c44 d e f g a b c c0- is an ascending quarter-note scale starting on middle C, followed by an octave jump down to a whole note middle C.

Explicit octave numbers can be combined with one or more + or -. In earlier versions, + or - was ignored if an octave number was specified. This is a slight backward incompatibility; PMX prints a warning when it happens.

Stem length can be shortened by x \internote with the option Sx. x is restricted to the range (.5,4.0). The shortening can be made “sticky” by following the number x with :. Stickiness is terminated by S:.
The first note symbol of each line of music in a block must contain at a minimum the note name or r for a rest (see below), and a basic time value. For notes, it is good practice and can simplify editing if in addition an explicit octave is set here. However if it is not, PMX will make some assumptions. At the start of the first input block the pitch will be set as if the prior note were middle C. In later blocks PMX will use the obvious inheritance rules from the end of the prior block. However, if the number of lines of music in a staff has changed from the prior block, it is safest to reset the octave at the start of a new block. Duration is never inherited and must be set at the start of each input block.

Dots can be a little tricky, because even though they affect the actual time value, they don’t affect the basic time value, and it is only the latter that is “sticky”. Therefore, if a note is dotted, you always have to enter a d (or a period, see next paragraph) somewhere within the symbol, after the note name, even if the actual time value and octave are the same as the prior note. But the basic time value need not be re-entered if it hasn’t changed (unless the note is more than a fourth from the prior note and you have for some strange reason elected to indicate the octave with a number rather than + or –). So for example, consecutive dotted half notes, each within a fourth of the previous one, could be most cleanly entered as cd24 ed gd ed, whereas cd24 e would represent a dotted half note followed by a plain half note (since the basic time value—as defined by the first digit—was a half note all along).

There are two special shortcut rhythmic notations. For normal dotted rhythms (3:1 ratio), if you include a period (.) in the note symbol, it will (a) assign a dot to the note just entered, (b) terminate that note, (c) prepare to receive the next note name without any space, and (d) automatically assign a time value to the second note equal to one-third of the first one. No time value may be entered for the second note, but octave and accidental data may. Ornaments and slurs (see below) following this symbol will apply to the second member. If you need to follow the main note with some modifying command, you can still use the shortcut (.) after that command and a space. The main advantage of this shortcut comes if you want to follow one dotted pair with another of the same rhythm; then you needn’t enter any explicit time value for either member of the second pair. This is only possible because after using the shortcut, the basic (inheritable) time value is set to that of the first note in the pair, without the dot.

For paired notes with 2:1 rhythmic ratios, the symbol , (comma) behaves similarly to the . (period) for 3:1 rhythms.

Xtuplets can have from 2 to 24 notes or rests. Normally they all have the same duration, but there are several options—described below—to change this. The symbol for the first note of an xtuplet begins exactly like a note or rest symbol, with the name of the first note in the xtuplet, or r if it starts with a r rest (see next subsection), and an optional time value. However, the actual time value (including a dot if present and a basic duration that may have been inherited from the prior note) now represents the total duration of the xtuplet. Next (with no space, as usual) comes x followed by a one- or two-digit integer for the number of notes in the xtuplet. The only options allowed after the number are d and n. d signifies that the first note of the xtuplet should have a dot and the second, and extra flag. n controls the printing of the number. If n is followed by a blank, then no number will be printed. On the other hand, an unsigned integer is taken as a substitute number to be printed instead of the natural one. If one or two signed decimal numbers follow n (each starting with + or –), the first is a vertical shift in \internotes, and the second, a horizontal shift in notehead widths. A final suboption to n is f, to flip the number vertically from its default position.

The second through last notes of the xtuplet are each then represented by a separate symbol containing a subset of the characters permitted for ordinary notes or rests: note name or r (the only required character), accidental, and octave change character (+ or –). The octave may be given explicitly instead, and any integer will be interpreted as such, as no time values or dots are permitted.
The last note of an xtuplet may not be a rest.

To double the duration of any note in an xtuplet, add the character D to the symbol for that note. This will decrease the expected number of notes in the xtuplet by one. To add a dot to the doubled note (as Bach sometimes did), use F instead of D. To add a dot to one note and an extra flag to the next, include d in the note symbol, after the x if it's the first note of the xtuplet as noted above.

As an example, an ascending quarter-note triplet scale would be notated
\[c44x3 \ d \ e \ f4x3 \ g \ a \ b4x3 \ c \ d \ldots\]

Rests

The symbol for a rest starts with r. Then for a normal rest, in either order come a digit for the basic time value (using same codes as for notes, optional if unchanged from previous value), a d if the rest is dotted, and a second d if double dotted. The basic time value of a rest affects future notes and rests the same as if it had come from a note, i.e., it applies until another value is entered with a subsequent note or rest in the same line of music. The symbol rp represents a full-bar rest notated with a pause character (whole rest) regardless of the time signature; in this case no other duration information is needed or allowed. rb, followed if necessary by a duration specifier, denotes a blank rest, one that occupies space and time but is invisible. This is most often used when there are two lines of music in a staff and one drops out for some of the duration of the current input block. (See mwalmd.pmx for examples). The option o (for off-center) suppresses centering a full bar rest. If you don't exercise this option, then all full-bar rests will be horizontally centered between bar lines, including pauses (rp) as well as normal rests that fill the bar. rm followed immediately by an integer will generate a multi-bar rest, a special combination of symbols between two bar lines with an integer above representing two or more bars of rest. This symbol will generally only be used in separate parts after having been automatically generated by scor2prt. However, it may be used in a multi-line score, provided it is entered for the same number of bars in every staff.

The default vertical position of a rest depends on whether there are one or two lines of music in the staff. For one line it is just the MusiXTeX default (approximately centered on the middle line). On the other hand, in the lower line of music in a two-line voice, the rest is lowered 4\internote, while in the upper line it is raised 2\internote. The PMX default can be manually overridden by appending + or - and an integer representing the offset from the middle line of the staff (not from the PMX default if there are two lines in the voice!). So for example, in a single staff in 3/4 meter, two lines of music each with a half note followed by its own quarter rest would be either
\[c24 \ r4 \ //\]
\[c25 \ r4 \ /\]

or equivalently
\[c24 \ r4-4 \ //\]
\[c25 \ r4+2 \ /\]

while
\[c24 \ r4+0 \ //\]
\[c25 \ r4b \ /\]

would produce two notes followed by a single, vertically centered rest.

Chords

Chordal notes, which always share a stem and the same time value as the prior note, are symbolized with z followed by a note name and optionally an accidental, + or - as octave indicator, and e or r
for a left or right shift by one notehead width. No basic time value is allowed. If the main note is
dotted, then the chordal note will appear with a dot regardless of whether a d is entered. The only
time a d is required in a chordal note symbol is if the dot’s position is to be adjusted; in this case
the d is required, followed by one or two decimal numbers, each preceded by + or -. The first is
the vertical shift in \internotes; the second, the horizontal shift in notehead widths. Any number
of chordal notes can follow a single main note. The stem direction of a chord is controlled by the
main note, but may be manually overridden with u or l in the main note symbol.

When chordal notes are beamed together, the default height and angle of the beam will be
determined by the main note on each stem (the one without z). If a beam joining chordal notes
looks bad, you can usually fix it either by changing which note acts as the main one, or by fine-
tuning the beam parameters as described starting on page 13.

Positioning of accidentals in chords is discussed in section 2.2 starting on page 7.

Grace notes

A grace note symbol starts with a G. It is entered in its natural order, normally before the main note,
but sometimes after. After G and before the note name, comes any combination of the following
options: a single digit representing the number of notes in the grace (default is 1), m and a digit
for multiplicity (number of flags or beams, default is 1, 0 is allowed), s for slur (joining all notes
of the grace to the main note; no other s is needed on the main note), x for a slash (only for single
gaces), 1 or u to force the direction of the stem(s), A (for After) or W (for Way-after) to associate
the grace note with the prior note. Next comes the only required character, the first note name.
No time value can be entered, but if needed, the octave or an accidental can be given as in a normal
note. Second and later notes must follow immediately in sequence, set apart by spaces, likewise
without any time value, and without any intervening symbols.

Normal or after-graces will be placed immediately before or after the main note; way-after’s, as
far to right as possible before the next note or bar line. If either type of after-grace is slurred, the
slur will start on the main note and end on the last one in the grace.

Ornaments

Symbols for ornaments are entered after their associated note symbol. The ornaments now avail-
able are shake (ot), mordent (om), “x”- or “+”-shaped ornament symbols (ox, o+), pizzicato (ou),
strong pizzicato (op), left parenthesis before notehead (o()), right parenthesis after notehead (o)),
upper fermata (of), down fermata (ofd), staccato (o_), tenuto (og), segno (og), arbitrary-length
wavy-line trill with tr (oT), arbitrary-length wavy-line trill without tr (oTt), sforzando (o>,
dunce-cap (o^), caesura (oc), and breath (ob). All except the parentheses, staccato, tenuto, and down
fermata will normally appear above the staff; the parentheses appear at the level of the note head,
and staccato and tenuto just above or below depending on the stem direction. The only difference
between staccato and pizzicato is the vertical positioning of the dot.

The trill and segno symbol may have additional optional characters. Either trill symbol may
include a decimal number to specify the length of the printed symbol in current \noteskips; the
default is 1. Thus oT0 represents tr with no wavy line. A segno can only appear in the first (lowest)
voice. It may be immediately followed by a positive or negative integer, which indicates a number
of points that it will be offset horizontally; and it will appear above every system.

Once the ornament type has been specified, most of them can be raised or lowered from their
default position by appending a signed integer to the symbol, representing the vertical offset in
\internotes. Caesura and breath may have in addition a signed number giving horizontal shift
from default in notehead widths. These two ornaments also differ from the others in their default
horizontal position, which is 0.5\noteskip past the note.
An ornament can be automatically repeated on a series of consecutive notes, provided the notes are all in the same input block. To activate this feature, terminate the first ornament symbol with : . Then every note in that line of music will have the same ornament until a note is followed by the repeat terminator o: .

Editorial accidentals

To place a small sharp, flat, natural, or question mark above the staff, after the affected note enter oe followed by s, f, n or ?. You may also put a question mark right after the accidental.

Slurs

By default PMX will use MusiXTeX's built-in font-based slurs. But through user intervention it is possible to use either one of two different types of postscript slurs. Type K slurs, developed by Stanislav Kneifl, are directly supported by PMX and will be the focus of any future PMX enhancements. They are activated and several global defaults set with options to the A symbol as described in the subsection starting on page 16. If these are used, so will an alternate set of hairpins (see section 2.2 starting on page 12). The other postscript slur option is Hiroaki Morimoto’s Type M slurs. These are not directly supported by PMX, but are supposed to be fully compatible with the default font-based slurs. To use them, one would use the in-line \input musixpss, and be sure not to enter Ap. From PMX’s standpoint they are no different from font-based slurs.

There are some advanced options available only with Type K postscript slurs, and a few obsolete ones only with font-based. At this point the main difference in functionality between the two is that with postscript, PMX provides support for true ties, which are shaped and positioned slightly differently from slurs. Future enhancements will probably only work with Type K postscript slurs. Some users do still prefer font-based, possibly because Type K postscript slurs are not visible in some DVI viewers. New users should experiment with the various types of slurs and decide for themselves.

The normal symbols for slurs are (placed with a space before a note, and) placed after. The symbol s is equivalent to both of them (!), except that it always follows the affected note. With font-based slurs, t is equivalent to s but with several minor differences to be explained later. With postscript slurs, t signals to use a true tie. The symbols s and t are toggles, turning a slur or tie off if it’s already on and starting one otherwise.

The first character is optionally followed by a single-character ID code (0-9 or A-Z, then by other options described below. ID codes are only needed if two or more slurs are open at the same time within one line of music, such as when several chord notes are tied. Using ID codes in such cases tells PMX which open slur to close. ID codes cannot be used with font-based t slurs.

The rules for finding the default direction and position of the a slur are complex; many factors enter into defining visually pleasing values. But there’s no need for gory details here; the result will usually satisfy, and if not, all can easily be tweaked. Default direction can be overridden with u (upper), l (lower), or equivalently d (down). Starting or ending position can be shifted from its default by entering one or two explicitly signed numbers. The first, which must be an integer, represents the vertical shift in \internote; the second, which may be decimal, the horizontal offset in notehead widths.

The shape of the slur may be altered as well. This paragraph deals with font-based slurs, for which the shapes may be less than fully satisfying due to fundamental limitations of MusiXTeX. At the slur termination only, one or three more parameters may follow the two just described. The first, a signed, nonzero integer, is a vertical adjustment to the mid-height of the slur in \internote. The next two, integers between 1 and 7 following a “:”, are alterations to the starting and ending slopes. These numbers are passed directly as arguments of the MusiXTeX macros \midslur (if only one is given) or \curve (if there are three).
For postscript slurs, the shape may be changed by including f in either the slur’s starting or ending symbol to flatten it a bit, or h, H, or HH to increase its curvature and raise or lower its middle by increasing degrees. Another option peculiar to postscript slurs and ties is to locally override the global setting for automatic height adjustment (to avoid tangencies with staff lines). The global defaults may be changed with the A symbol as described in the section starting on page 16. To override the global setting for the current slur or tie only, use the option p in the symbol that starts the slur or tie, followed by $+$ or $-$ (to turn adjustment on or off), followed by s or t (for slur or tie).

A dotted slur is activated by including the option b (for broken) in the symbol that starts the slur.

Slurs involving grace notes are specified within the symbol for the grace.

For font-based slurs, the unique aspect of t slurs is that if one starts or ends on the same note as an s slur, the former will be moved away from the notehead to avoid a collision. This only works if neither slur has an ID code. This feature is retained mainly for backward compatibility.

The available options should cover most circumstances, but if not, the \TeX macros \isu etc, defined in \texttt{pmx.tex}, can be entered as in-line \TeX commands (see section 2.4). These commands have three arguments: slur number, vertical position (pitch, or offset from bottom staff line in \texttt{\internotes}), and horizontal offset in notehead widths. When using these commands, you must choose an explicit slur number. Use one large enough to avoid conflicts with \PMX’s automatic slurs, which are numbered from 0 upward. Also, remember that non-spacing in-line \TeX commands such as this one must come before the note they apply to, in contrast with the \PMX slur toggles which may come after.

Ties

With font-based slurs, in \PMX the only difference between ties and slurs is the default positioning. Ordinary slur ends are centered horizontally above or below the notehead, while tie ends are shifted inboard and closer to the midheight of the notehead. To specify a font-based tie in \PMX, use a slur symbol and include the option t in it, somewhere after the initial $(,)$, s or t.

With postscript slurs, ties—indicated with t or st—will have similar differences in endpoint positions, but in addition will have a different shape (somewhat flatter) and will always end at the same height they start. There is also an option to the A command that affects ties across line breaks. By default the second part of such ties will be drawn as a complete tie symbol. However, if you want them to be a half tie—a special shape that is horizontal at its left end—use the command $A p+\text{h}$ at the start of the file.

Dynamics

After the affected note, enter D followed by one of the following $pppp$, ppp, pp, p, $ffff$, fff, ff, f, mf, mp, fp, sfz, "$\text{[any text]}", >$, or $<$. The last two are diminuendo and crescendo, and they are toggles, i.e., the first one of each starts the symbol and the next one ends it. The one surrounded by double quotes is an arbitrary text string. With any dynim, you can also enter position shifts, vertical as a signed integer representing the number of \texttt{\internotes}, then horizontal as a signed number representing number of notehead widths. There can only be one of the letter-groups on each note, but there may also be $D<$ and/or $D>$ on the same note. These must be entered as separate $D...$ commands, and must come in the right order, e.g.,

\[
\text{[some notes]} D< \text{[more notes]} D< Dffff D> \text{[more notes]} D>
\]

Hairpins must be contained completely within the same input block.

There are numerous context-sensistive automagic adjustments to the positions of all the dynamic symbols. If you don’t like the result you can adjust the position as just described.
Due to MusiXTeX’s limitations, there are some restrictions on hairpins when using font-based slurs. They cannot be longer than 68mm, they cannot wrap over a system break, and they must be horizontal. Finally, only certain specific lengths are available so some horizontal position tweaking may be needed, especially when letter-groups and hairpins are combined. These restrictions are all removed when using postscript slurs.

Beams

For the most part, **PMX** automatically takes care of the details of defining beams: selecting which notes are beamed together, and setting the angle, direction, height, and _multiplicity_ (the number of bars along the top or bottom). However, one may define a _forced_ beam – which overrides **PMX**’s selection of which notes are beamed together – by surrounding the included notes with [and], being certain to separate these symbols and their options from the included note symbols with spaces. One may also wish to edit certain features of a beam even when **PMX**’s grouping decision would otherwise be acceptable; here again the beamed notes must be set apart with [and]. The [may optionally be followed immediately by several options.

u or _l_ will override **PMX**’s selection of the direction of the beam, while _f_ will flip it from whatever **PMX** decided.

j joins the beam grouping to a prior one started in another system (see below).

One, two, or three consecutive integers, each preceded with + or -, will affect the beam’s appearance. The first integer is an adjustment to the starting level (in _\internote_ s) and may range from -30 to 30; the second is a slope adjustment with the same permissible range; the third is an alternate adjustment to the starting level (in beam thicknesses) and may only range from 1 to 3, always acting to increase the stem length. The latter may be used to align consecutive horizontal beams which have internal multiplicity changes. For example, in 2/4 time, \texttt{c84 c1 c c c c8} would cause two beams but the first one would be lower than the second; \texttt{+0+0+1 c84 c1 c } c c c8 would align the tops of the beams with each other. Due to the complexity of **PMX**’s beam analysis procedures, these editing commands may sometimes produce unexpected results, and some iteration may be required to get exactly what you want. For example, \texttt{[+0+0+3 cd8 c3 c6 c] c c c3 cd8} will not produce two aligned beams as desired, because when **PMX** analyzes the first beam, it automatically raises the starting level a bit for another reason, namely, to avoid too short a stem on the 64th notes at the end of that beam. In this case, the user could counteract **PMX**’s internal adjustment by using \texttt{[-1+0+3 cd8 c3 c6 c] c c c3 cd8}.

The character \texttt{m} followed by a digit 1-4 forces the _multiplicity_ of the beam, the number of stem-joining bars.

The option \texttt{h} forces the beam to be _horizontal_.

By default, xtuplets are set apart with their own beam. To beam an xtuplet together with other non-xtuplets, just include it with the other notes in a forced beam.

Rests may also be included within forced beams, provided they are shorter than quarter rests, and of course that they come _between_ the first and last notes under the beam.

Some users may wish to define beamed groupings with subgroups joined by a single beam. The symbol [, standing alone between two note symbols in a forced beam, causes the multiplicity to decrease to unity and immediately increase to its natural value for the next note. For example, \texttt{[c14 c c c] [c c c c c]} will generate two doubly-beamed groups connected by a single beam.

Related to this is a _single-slope beam group_, which is the same as described in the previous paragraph except that the beam disappears between segments. Segments should be separated by \texttt{[} standing alone between two notes inside the forced beam.

If there are large jumps in pitch between notes in a beam within a single staff, as a matter of taste you may wish to start the beam for example as an upper one and end it as a lower. **PMX** will never do this automatically, but you can accomplish it by forcing the beam with appropriately modified up/down-ness, starting level, and slope. If you use this technique, there are two details
to note: (1) if there are any intermediate multiplicity changes, they will only be handled properly if the initially specified up-down-ness is consistent with the vertical position of the intermediate notes involved, and (2) for proper appearance in crowded scores you may wish to insert hardspace or shifts as described in section 2.3 on page 17. Some examples are included in most.pmxml.

Beams cannot normally jump staves. But if that is desired, start the beam normally in one voice, and terminate the part of the beam in that voice with \[j \] . Then resume the beam in the new voice with \[j \]. For staff-jumping beams, it’s OK to have just a single note inside one or both of the members. Some adjustment of the beam height and slope may be required. Sometimes the ending section’s up-downness must be overridden; you will know this is so if the ending is shifted horizontally from its proper position. Each line of music must still have the right number of beats, so you will probably need to fill time with blank rests after the first member of the beam and before the second. In version 2.1 we have removed certain restrictions on the multiplicity and jump direction for staff-jumping beams. However, there can only be one staff-jumping beam open at a time.

Clefs

A clef change is signaled by \(\mathcal{C} \) followed by a single lower-case letter using the code specified at the end of section 2.1 on page 4. Numbers may also be used as defined in the MusiXTeX documentation. If clefs come out at the wrong vertical position, refer to the note in pmx.tex.

Arpeggios

To set an arpeggio (a vertical wavy line), simply place the symbol ? after the symbols for both the first and last note.

2.3 Commands That Affect All Voices

Most commands that affect all the voices can only appear in the first (lowest) line of music in the first (lowest) staff. Most such commands will automatically be transferred from score to parts when separate parts are generated by scor2prt (see section 3, page 20).

Repeats, double bars, forced single bars

Repeat signs, double bars, and other bar-ending options are signaled by \(\mathbb{R} \) followed by \(l, r, lr, d, D, dl, b \) or \(z \) for left repeat, right repeat, left-right repeat, thin-thin double bar, thin-thick double bar, thin-thin double bar followed by left repeat, single bar, or blank (invisible) barline. Some of these have peculiarities. \(\mathbb{R}b \) forces a single bar before a movement break (page 17), where otherwise by default there is a double bar. That can be useful for example if you change the number of instruments (via an option in the movement-break command) in the middle of a movement. \(\mathbb{R}z \) will cause a blank barline at the end of the current system, not necessarily the current bar. It can be used together with blind meter changes if you want to split a bar across a system break. If \(\mathbb{R}lr \) falls at a system break, PMX will automatically split it in two. The symbol \(\mathbb{R}dl \) will likewise be split at a system break, but if not at a system break, the \(d \) will be ignored.

These symbols must be in the first voice. It is best only to place them before the first note in an input block or if necessary after the last one; otherwise scor2prt may behave erratically. Using two separate \(\mathbb{R} \) symbols in succession will cause unpredictable results.

Voltas (first and second endings)

Beginnings and ends of first and second endings are signaled by \(\mathbb{V} \) (for volta). If it’s the end of the volta, enter \(b \) (for box) or \(x \) for no box. If it’s the start of a volta, you can optionally enter any
text at all that doesn’t include a space and doesn’t start with b or x (most commonly 1 or 2). A period will automatically be appended to the text. If one volta ends and another starts right away, only a single V is needed. Voltas must only be entered in the first voice. If separate parts are to be created from a score using \texttt{scor2prt}, then only a single volta may appear in any given input block, and it must be at the beginning of the block.

\textbf{Meter changes}

Meter can only be changed at the beginning of an input block. A \textit{meter change} symbol starts with the letter \texttt{m}. There are two different ways to complete the symbol.

\textbf{Method 1.} Enter 4 numbers with no intervening spaces. The four numbers are \texttt{mtrnuml}, \texttt{mtrdenl}, \texttt{mtrmp}, \texttt{mtrdnp} as defined in section 2.1, with the following exceptions for this method only: You must use o to represent the number 1; if you enter the digit 1 then \texttt{PMX} will interpret that digit and the next as a 2-digit integer, between 10 and 19 inclusive. 19 is the largest number that can be entered with this method. Note that \texttt{mtrdenl=0} still represents a whole note.

\textbf{Method 2.} Enter the four numbers in the same order as described above, but separate them with slashes (/).

\textbf{Transposition and key changes}

To transpose an entire score, at the beginning of the first block enter K (for Key) followed by two explicitly signed digits. The first is the distance to transpose (in \texttt{internote}s); the second is the new key signature. When transposing, you should always use relative accidentals, activated by the separate symbol \texttt{Ar} at the start of the first input block (see the section starting on page 16). For example, to transpose a piece in C major to E major you would enter \texttt{Ar K+2+4} at the beginning of the first block.

To transpose by a half step to a key with the same letter name, use \texttt{K-0+[n]} . (Using \texttt{-0} instead of \texttt{+0} eliminates confusion with a simple key change, see the next paragraph.)

A key change can be signalled at any time in the first voice, and will affect all voices. Use the command \texttt{K} with \texttt{+0} as the first argument and the new key signature as the second.

\textbf{Text}

The symbols \texttt{h} or \texttt{1}, when placed in the first column of an input line and followed by a blank or, for \texttt{h} only, by a signed integer, stand for \texttt{header} and \texttt{lower text}. They will put a text string above or below the top staff in the first bar of the block where they are entered. The text string must be on a line of its own, immediately following the symbol. The integer is a vertical shift in \texttt{internote}s.

A \textit{title block} with up to three elements can be defined at the beginning of the first input block. \texttt{Tt} signals that the text \textit{on the following line} is to be set as a title for the whole piece, and it will be centered. \texttt{Tc} similarly indicates a composer’s name, to be set below the title and right justified. \texttt{Ti} likewise stands for an instrument name, which will be set above the title, left-justified. The text for any of these commands can be split over two or more lines by including \texttt{\} at the location of the line break.

\texttt{Tt} will automatically be invoked by \texttt{scor2prt} when it generates parts from a score.

Extra vertical space can be added between the title block and the top system by appending to \texttt{Tt} a one- or two-digit number representing the space in \texttt{internote}s. This only works if \texttt{Tt} is the final title block element entered.

\textbf{Page numbering, centered header text}

If you want pages to be numbered at the top left or right, place the symbol \texttt{P} anywhere within the \texttt{PMX} code that represents the first page to be numbered (usually the first or second). \texttt{P} can be
followed optionally by the starting page number and/or by 1 or r, the latter overriding the default locations of odds on the right and evens on the left. There is also a special option c for centered header text. It must be the last option in the P symbol. It will define text to be printed at the top of every page after the first. If a blank follows c, the default header text will be the instrument name entered with the symbol T1. If any non-blank character except " follows c, the header text will start with that character and end at the next blank. If " follows c, the header text will be everything between that and the next " (this permits headers containing spaces). The P symbol and its options will be ignored when making parts from a score (since page numbering will usually be different in the score than in the parts), but page numbering (and centered headers) for parts can be still be initiated independently, for example with %!P2 or %1P2r (see section 3, page 20).

Overriding certain defaults for accidentals, dot positions, vertical spacing, slurs

The symbol A can be used to override a grab-bag of default settings:
- \b makes all accidentals big, s makes them all small. By default, big ones are used unless unaltered spacing doesn’t provide enough space. Thus the default behavior may cause a mixture of big and small accidentals, and in fact is not recommended.
- If transposing, then the relative accidental convention should be used, indicated by r. The default is the normal, absolute convention.
- If there are staves with two lines of music, d causes dots in the lower line to appear on or below center, in contrast with the default.
- Use a followed by a decimal number to override the default setting for \afterruleskip, the space before the first note in a bar. The default in PMX is 1\elemskip, 20 percent smaller than MusiXTeqX’s.
- If PMX’s vertical spacing between staves within a system is not pleasing, use I or i, followed by a decimal number, to apply a scale factor to \interstaff. I affects all pages, i only the current one. Shrinking the space between staves within each system will cause the space between systems to increase, and conversely. These options have no effect if there is only one staff per system.
- MusiXTeqX normally draws a virtual box around each system and inserts equal vertical space between boxes. When objects protrude above the top staff in a system or below the bottom one, this can lead to unequal spacing between the top staff line in one system and the next. If you prefer that the vertical spacing between the staves of consecutive systems be constant for the whole page, use the e option of the A command. When using this option, you may occasionally want to force more vertical space between certain systems. There is a TeqX macro \spread that can be inserted anywhere in the system before the desired wider gap. It has one argument, the desired extra space in \internotes.
- Another command affecting vertical spacing is the v option (for vshrink) of the A command. PMX normally spreads staves vertically over a full page, unless the white space becomes excessive, in which case it groups all staves near the top of the page. Entering Av will suppress this grouping near the top, and ensure that systems will always be spread vertically regardless of how much white space is left. It is a toggle; the second time it is issued, the behavior reverts to the default.
- In PMX it’s not yet possible to specify a smaller font for selected staves. But it can be done with the TeqX command \setsizer\smallvalue (using in-line TeqX, see section 2.4, page 18). If you do this, then you ought to use the S option to the A command. It is followed by exactly nv characters which are either - or 0 depending on whether the corresponding staff is normal or small. This alerts PMX to modify some horizontal spacing decisions to account for the smaller font size.

The command Ap activates Type K postscript slurs. To use this you must have musixps.tex somewhere that TeqX can find it, and psslurs.pro somewhere that dvips can find it. These files are available from the Icking Music Archive (see Section 6 starting on page 24. By default these slurs and ties will not have their vertical positioning tweaked to avoid tangencies with staff lines.

To activate this type of adjustment, use one of the suboptions +s or +t for slurs or ties respectively.
(For example, \(Ap+s \)). Be warned that this may alter the endpoint positions from what one would normally expect. To deactivate the adjustment, use the same command but with \(- \). Another option pertains to the second part of line-break ties. By default in such cases a full tie is drawn at the start of the second line. However, there is a global option \(Ap+h \) to use halfties for the second part, which are flattened at their left-hand end, and require a special font provided with the Type K postscript slur distribution. It may be cancelled with \(Ap-h \).

Extra hardspace, horizontal shifts

Despite the author’s best intentions to relieve you of the chore of adjusting *any* horizontal spacing by hand, there may be some occasions where you will want to do it. A symbol starting with \(\text{x} \) initiates one of two types of horizontal adjustment: A *shift* moves one or more characters but does not affect any other spacing anywhere; a *hardspace* inserts a fixed amount of space at a particular time and affects the horizontal positions of everything in all staves in the system. If the symbol includes \(S \), it is a *single* shift and affects only the next note or rest. If it includes \(: \) it either starts or terminates a *group* shift. All \(\text{x} \) symbols except group shift terminations must include a decimal number for the size of the offset in notehead widths. If the number is immediately followed by \(p \), then the number represents points, otherwise, notehead widths. If there is no such number but there is \(: \) the symbol signals a group shift termination. Group-shift symbols must occur in start/terminate pairs, and group shifts cannot extend across a bar line.

An \(\text{x} \) symbol containing neither \(S \) nor \(: \) is automatically a hardspace.

Because horizontal spacing in parts will usually differ from that in the score, by default the hardspace command will *not* be copied into parts by \texttt{scor2prt}; however the shift commands will be copied. These behaviors can be overridden using the methods to be described in section 3, Alternatively, to help keep PMX score files neat and readable, the character \(B \) can be used within the \(\text{x} \) symbol to signify that it applies to both score and part, or \(P \) for part only.

Minimum spacing between notes in crowded systems

PMX does some special, complex analysis to adjust horizontal spacing in crowded systems. By default, the minimum space between consecutive noteheads is 0.3 notehead widths. If you want to change 0.3 to some other fraction, enter \(W \). (decimal point is required) followed by \(1-9 \) to represent the number of tenths of a notehead width to be used as the minimum spacing.

Page size

The default page size is 740 by 524 pt (10.3 by 7.3 in). To change the height or width, use the special symbols \(h[n][u] \) or \(w[n][u] \) at the beginning of the first input block. Here \(n \) is a decimal number for the new dimension and \(u \) defines the units; \(i \) for inches, \(m \) for millimeters, and \(p \) or nothing for points. This command can be used together with \(%\% \) or %! (see section 3, page 20) to give the parts made by \texttt{scor2prt} different page sizes than the parent score.

Line, page, and movement breaks

It is possible to force line, page, or movement breaks anywhere. For a line break, just enter \(L[n] \) at the start of an input block (in the first voice only), and the \(n \)-th system will start there. To start page \(m \) at line \(n \), enter \(L[n]P[m] \). You can’t force a page break without first forcing a line break.

To force a movement break, you must first force a line break as above, then enter \(M \). If a page break also occurs here, the \(P \) must precede the \(M \). Options following \(M \) are \(+[integer] \) to insert vertical space in \texttt{_internotes} before the break, \(i[decimal \text{ } number] \) to reset the first-line indentation as a fraction of the line width, and \(c \) to continue bar numbering rather than resetting the bar number to 0. Also, to change the number of instruments, enter \(n[integer] \), then the number of each instrument
in their new order, then a clef symbol for each staff of each instrument. (An instrument’s number is simply its position in the original sequence.) There can never be more than the original number of instruments. If you want to start with some number and later increase it, you’ll need to insert a dummy page at the beginning with the full set of instruments, then start the second page with a movement break and decrease the number there.

Another option after M is $r+$ or $r-$, which either forces or suppresses reprinting the instrument names. The default is to print them if the number of instruments changes, but otherwise not.

Immediately after a movement break, any desired meter changes, key changes, or text can be entered in the normal way.

Fractional bars

Often if a piece starts with a pickup, the last bar may not be complete. In such cases, it is usually possible to place the last bar in an input block by itself, headed by a *blind* meter change. For example, if the meter had been 4/4 and there was a quarter note pickup, leaving 3 beats in the last bar, the last bar might be coded $m3400 \ cd24 /$.

Stem direction of bass notes

By default PMX makes stems go up for middle-line D’s in bass clef, but down for notes on the middle line of all other clefs. If you want middle-line bass-clef notes also to have downward stems by default, enter a B near the beginning of the file.

2.4 Putting TEx Commands into the .pmx File

There are five ways to enter TEx commands into the .pmx file. Four of them are *in-line*, where the commands are entered directly; the fifth is by way of an external file.

The four categories of in-line TEx strings differ mainly in where they will appear in the .tex file. (A TEx string consists of a starting character, a sequence of TEx commands, and a terminal character). In the .pmx file, only type 4 TEx strings may wrap over line breaks. All in-line TEx must adhere to the 128-character limit per line, but each line can have more than one TEx command. Type 1 begins with a single \ and will appear in the .tex file right before the TEx command for the next note or rest in the .pmx file. Starting with version 2.1, multiple type 1 strings associated with the same note or rest are allowed, although the total length may not exceed 128 characters (so there is generally no reason not to combine all TEx commands for a single note into a single type 1 string).

A type 2 string begins with `\` and will appear at the top of the .tex file, right before `\startmuflex`, regardless of where it appears in the .pmx file. A type 3 string starts with `\\` and will appear right before the `\xbar` or `\alaligne` at the beginning of the current input block, before the first barline of the block. While individual type 2 and 3 strings may not wrap over line breaks in the .pmx file, strings of like type on consecutive lines will appear together in the .tex file. Types 1, 2, and 3 strings must end with `\` (backslash-space). This means that they may not contain the TEx macro `\` (backslash-space). Finally, each type 2 or 3 string should be isolated on a line of its own, and should be started in column 1.

Type four permits multiple lines of arbitrary text to be entered at the top of the .pmx file; they will be transferred literally to the top of the .tex file. Type four is initiated with `---` alone as the top line of the .pmx file. Then follows any text on any number of lines, until the next line starting with `---` terminates the block to be transferred.

The only other distinction among the types of in-line TEx strings arises when `scor2prt` is used to make separate parts (see section 3, page 20): types 2-4 will be copied into all parts, while type 1 only goes into its original part.
If you should want to enter a type-1 (note-based) string longer than 128 characters, you could use a series of type-2 or -3 strings to define a \TeX macro containing the desired commands.

\TeX provides one further option for entering an unlimited set of \TeX commands just before \texttt{\startmuflex}, and before any Type 2 in-line \TeX strings. Simply put the commands into a text file named \texttt{[basename].mod} in the texinput directory. It will then automatically be entered with an \texttt{\input} command. This feature is retained mainly for backward compatibility; it has been essentially replaced by the various options for in-line \TeX strings.

2.5 Figured Bass

Figure symbols are entered \textit{after} their associated note symbols. They only work in the first (lowest) voice. Enter the characters as they would appear from top to bottom, and as you might pronounce them, e.g., 64 or 73. Flats here are − (minus), sharps are #, and naturals n, \textit{before} the number (if there is a number) (notice the characters are different here than in notes). So for example \textit{sharp third} is #3, just a sharp is #, \textit{six (over) flat five} is 6–5, and \textit{sharp six (over) four} is #64. The program positions all the figures for each system below the lowest staff of that system, with their tops aligned, and just low enough to clear the lowest beam, notehead, or stem that could interfere. If you want a figure to align horizontally in the second tier, insert the placeholder figure _ (underscore) before the one you want lowered.

Sometimes you may need to enter a figure when there’s no bass note sounding. To do this, just after the most recent bass note enter x, followed by a two single digits (the first is a repeat count; the second a time value, i.e., 2, 4, 8, 1, or 3), immediately followed by a figure symbol as defined in the previous paragraph. This will offset the figure from the associated note by the specified time value. For example, if the lowest voice contained c03 x3465, there would be a whole-note c, and 3 quarter notes later a figure 65 below the staff.

There is also a \textit{continuation} symbol, a zero followed immediately by another unsigned number. This produces a horizontal line under the bass note, starting just to the left and extending to the right by the given number of \texttt{\noteskips}. The height and length of the line are set by the current note’s level and \texttt{\noteskip} respectively. These can be mixed in with other figures to produce vertical stacks. If another figure follows in the same symbol, use : as a separator. If \texttt{\noteskip} changes or a note drops below the starting level before the line ends, it is possible to trick \TeX by entering separate \texttt{0[n]} symbols under each consecutive note; \TeX will automagically join them together at the same height (thanks to Werner Icking for this idea).

If there are figured bass commands in a \texttt{.pmx} file but you want them to be ignored, then enter the symbol F at the beginning of the body of the file. This feature would most often be used in the form %\texttt{1F} (see section 3, page 20), which makes a separate bass part with no figures.

Figured bass symbols will not be altered in any way under transposition. There is no universal set of interpretations of figured bass symbols, so no automatic transposition is possible.

2.6 Macros

A \TeX macro is a single symbol that stands literally for any any string of characters that may occur in the input file (sorry, no variables). It may be useful if you need to repeat the same string later. There is no practical length limit.

To \textit{record} a macro, type \texttt{MRn} where \texttt{n} is between 1 and 20. Everything you then type will be processed normally as well as stored, until you enter the symbol M. The next time you need to enter the same string, just type \texttt{MPn} to \textit{play back} the macro.

To \textit{just save} a macro without having \TeX process it as you enter it, start it with \texttt{MSn}.

Macros can be redefined at will. \TeX will print a warning whenever this occurs.

If you use macros and want to make separate parts, some care is necessary. \texttt{Scor2prt} will only transfer \texttt{MR} macros into the part where they originated, but will transfer \texttt{MS} macros into all parts.
2.7 Batch Processing

Due to the number of different programs that must be run in sequence to produce a printed sheet of music with the MusiXTeX system, most users prefer to use a batch file to control the process. Since batch commands are platform-dependent we will not provide examples here, but will mention several PMX features that can facilitate batch processing.

First, whenever pmxab terminates due to a syntax error, the exit code is set to 1. There are various ways of detecting this with batch commands, then acting accordingly. Second, pmxab always writes a file pmxaerr.dat containing a single number: 0 if it exited normally, otherwise the line number in the .pmx file where the syntax error was. With advanced batch programming techniques, this file can be opened and read, and if there was an input error, a text editor can be opened and the input point placed on the line with the error.

There have been several requests to allow PMX to keep running even after it detects an input error. This has not been done because in most cases, any error messages after the first one would be meaningless, or worse, uncorrected errors could cause crashes. In any event, all the output from pmxab will be stored in the log file [jobname].pml.

2.8 Lyrics

PMX has no special provisions for lyrics. One way to include them is by using the macro package musixlyr.tex developed by Rainer Dunker. It introduces lyrics into TeX more easily than with MusiXTeX’s own facilities. The macros could be entered as in-line TeX directly into the .pmx file, but most would prefer the convenient interface to musixlyr via the program M-Tx developed by Dirk Laurie. It is a pre-preprocessor which produces a .pmx file containing the proper in-line TeX commands. Its input language is similar (but not identical) to PMX and includes most PMX functionality as a subset. Both M-Tx and musixlyr.tex are available from the Icking Music Archive (see section 6 on page 24).

3 Making Parts from a Score

Separate parts can be made by running scor2prt and entering the basename when prompted. The program will create noinst separate .pmx files, one for each instrument. The files will be named [basename]n.pmx, where [n] is the number of the voice.

In this section we describe how to control the layout of the parts separately from that of the score, but by using commands that are placed in the .pmx file for the score. This eliminates the need for ever editing the .pmx files for the parts separately. You can make all corrections in the file for the score, and then re-run scor2prt.

Normally all lines starting with % in the parent .pmx are transferred into all the parts. However, if a line has %\% in columns 1-2, both it and the following line will be ignored when making parts. If the ignored line contains only \h, \l, \Tc, \Ti, or \Tc to start, then one additional line will be ignored.

Conversely, if a line begins with %! then it will be ignored as usual in creating the parent .tex file, but after stripping the first 2 characters the rest will be put in the .pmx file for all the parts.

To enter a line into the score file that is only to be transferred to one part, begin the line with %h, where h is the hexadecimal digit representing the part number (1, 2,..., 9, a, b, c). The first two characters will be stripped and the rest transferred to the desired part. For example, to force a line break to system 15 and a page break to page 2 in part 11 only, enter %bL15P2. The use of the hex digits a-c creates a potential incompatibility with prior versions. To minimize this, the character after “%” will only be interpreted as a part number if it represents a number less than or equal noinst; otherwise the entire line will be treated as an ordinary comment and transferred to all parts as a comment.
Although only permitted in the first voice in the score, the following symbols with all their options will automatically be copied into all parts (unless the preceding line has \%\%): m, V, B, A, h, v, k. Literal \TeX\ strings of types 2-4 will also be copied into all parts, while type 1 will only go into its original part.

User-defined hardspaces (X without :) are handled specially. By default they are not copied into parts. There are two ways to circumvent this. One way to insert hardspace \x\ into part \n\ is to place \% [n] \x\ in the score, on a line of its own, the symbol \%[n]\x\ . The other way is with options in the X command in the score: B causes the hardspace to be used in both score and parts; P puts it into the part but not the score.

Lateral shifts (X[...]:) will be handled normally, staying with their original line of music.

By default the total number of systems in each part will be the same as in the score. If you want to override this, there is a symbol S[n] (where \n\ is the desired number of systems), which can only appear at the beginning of the first input block. This can be used after \%! to affect all the parts, or after \%!k\ to affect just part \k\ . \texttt{Scor2prt} will also compute how many pages it thinks each part should have, and enter that in the startup data for that part. If you wish to override that, then in the .pmx file for the score, insert for example \%3S14P2 to force the third part to have 14 systems and 2 pages (you cannot override the number of pages without first overriding the number of systems).

A musicsize of 20 is the default in all parts. This may be overridden with the option m in the symbol S; e.g., \%2S15m16 .

As already noted, a P symbol for page numbering in the parent file is ignored when making parts. To initiate page numbering in the parts, use for example \%!P anywhere within the PMX code representing the first page of the parts (from \TeX\’s standpoint the command must occur between the beginning and end of the page on which the numbering is to begin). It will often be useful in this case to use the option c , which by default causes the instrument name to be centered in small type at the top of every page after the first.

Note the distinctions among the various usages of P: as an option with S, it sets the total number of pages in a part; as an option with L, it forces a page break; and as a command on its own, it controls page numbering and centered headings.

MIDI commands, i.e., those starting with I, will never be copied into parts, unless they are in a special comment line as just described.

One function of \texttt{scor2prt} is to condense consecutive bars of rest into a single group of special printed characters with a number above it. The symbol rm defines such a multi-bar rest as described in section 2.2. \texttt{Scor2prt} will automatically insert rm symbols into the .pmx files for the parts where appropriate. However, for this feature to work, the first full-bar rest in the sequence must have its duration explicitly defined in the parent .pmx file, either with a digit or with p. I.e., the feature will not work if the first rest in the sequence inherits its duration from the previous note.

Using the special PMX commands listed in this section, augmented where needed with literal \TeX\ commands, it is possible to store all the information for both the score and the parts in a single .pmx file. This greatly simplifies the editing process, since both the score and the part can be corrected at once, and parts need not be re-edited each time they are regenerated from the score.

4 Making MIDI Files

Entering the command I before any notes have been entered will cause a file [jobname].mid to be written in current directory. Options may follow, without spaces. They are defined in the following paragraphs. Multiple options can be combined in one I command. I commands can appear later in the file as well, but only at the start of an input block. Sometimes the order of the options matters, determining for example whether or not a user-defined pause is included inside a macro block.
tx sets the tempo to \(x \) quarter notes per minute. Default is 96. You can change tempos as often as you like, but only at the start of an input block (as with all MIDI commands).

\(ii_1i_2...i_n \) assigns MIDI instruments \(i_1,i_2,...,i_n \) to the respective PMX instruments. The default is harpsichord, of course. If you use this option, you must specify all instruments. Each \(i_n \) is either a 2-letter abbreviation or an integer between 1 and 255. Acceptable abbreviations are listed below. Numbers and pairs of letters may be mixed, but consecutive pairs of numbers must be separated by : (colon). This option can only be exercised once per file. Also, the number of instruments cannot change during a piece.

\(vi_1i_2...i_n \) assigns MIDI velocities to each instrument. The colons are required. Values may range from 1 to 127. The default is 127.

\(bi_1i_2...i_n \) assigns MIDI balances to each instrument. The colons are required. Values may range from 1 to 128. The default value is 64, which represents the center. Smaller numbers favor the left stereo channel; larger ones the right.

\(M \) initiates a macro operation. This is used for repeats, da capo’s, etc. Macros must have ID numbers between 1 and 20. Operations are start record macro \(i: MR_1 \); end recording: \(M \); and playback (insert) macro \(i: MP_1 \). Only one macro can be active at a time, recording or playing but not both. If you try nesting or overlapping macros, your computer will become psychotic.

\(px \) inserts a pause of \(x \) quarter notes. Decimals are allowed, but will be rounded to the nearest sixteenth note.

\(gi \) Sets the MIDI gap to \(i \) MIDI clock tics. This is a silence inserted at the end of every note, while decreasing the sounding duration by the same amount. The default is 10, which is 2/3 of a 64th note.

The module does not recognize graces, ornaments, repeats, voltas, or segnos. The only ties that are recognized are those using \(s \) or \((\) alone, with no explicit ID number. Key signatures, time signatures (meter) and instrument names will be written into the MIDI file, the latter as track names. This will have no effect whatsoever on audible output but will affect on-screen appearance of some MIDI file players and editors. Location of the PMX key-change and meter-change commands relative to MIDI macro delimiters in the source will affect (in the obvious way) how these data are passed to such programs.

The MIDI file generator does not yet support changing the number of instruments in midstream. Doing so will cause unpredictable results.

The instruments are a subset of “The General MIDI Instrument Specification.” Of course how they sound depends on your hardware and software. Instruments not listed below can still be used but must be specified by number. The numbers listed here are from the 1-128 range; when passed to the MIDI file they are reduced by one.

\(pi \)	Acoustic Grand Piano (1)
\(rh \)	Rhodes Piano (5)
\(ha \)	Harpsichord (7)
\(ct \)	Clavinet (8)
\(ma \)	Marimba (13)
\(or \)	Church Organ (20)
\(gu \)	Acoustic Nylon Guitar (25)
\(ab \)	Acoustic Bass (33)
\(vl \)	Violin (41)
\(va \)	Viola (42)
\(vc \)	Cello (43)
\(cb \)	Contrabass (44)
\(vo \)	Synth Voice (55)
\(tr \)	Trumpet (57)
\(lb \)	Trombone (58)
\(tu \)	Tuba (59)
\(fr \)	French Horn (61)
\(so \)	Soprano Sax (65)
\(al \)	Alto Sax (66)
\(te \)	Tenor Sax (67)
\(bs \)	Baritone Sax (68)
\(ob \)	Oboe (69)
\(ba \)	Bassoon (71)
\(cl \)	Clarinet (72)
\(fl \)	Flute (74)
\(re \)	Recorder (75)

5 Limits

For simplicity in writing the program, PMX has numerous variables with fixed dimensions. In most cases there are no checks against these limits (hey, I’ve got more important things to program), so
occasionally there may be hangups due to exceeding a dimension. Any of these can be increased on request. However, before making such a request, it will usually be possible to work within existing limits by breaking the input into smaller blocks.

Limits on quantities that a user can control

128 characters per input line.
12 voices (staves).
2 lines of music per staff.
12 lines of music per system.
125 systems.
600 bars.
40 forced line breaks.
10 forced page breaks.
18 key changes.
20 pages.
200 notes per input block.
15 bars per input block.
101 slurs per input block.
74 figures (figured bass) per input block.
37 grace note groups per input block.
74 notes in grace note groups per input block.
52 literal \TeX strings per input block.
6 voltas per input block.
18 trills per input block.
62 chordal notes (non-spacing) per input block.
8 beams per line of music per bar.
20 forced beams per line of music per input block.
10 clef changes per line of music per input block.
24 notes per beam.
24 notes per xtuplet.

Limits not under immediate user control

2000 \notes groups.
20 \notes groups per bar.
20 inserted standard anti-collision spaces (not xtuplet or end-of-bar) per bar.
20 inserted anti-collision spaces within xtuplets per bar.
19 inserted anti-collision end-of-bar hardspaces per system.
83 inserted anti-collision end-of-bar hardspaces.
400 inserted standard anti-collision spaces per system.
100 inserted anti-collision spaces within xtuplets per system.
1000 inserted standard anti-collision spaces.
200 inserted anti-collision spaces within xtuplets.
24576 bytes of MIDI output data per line of music.
6 Closing Notes

About the Example Files

most.pmx contains examples of most of the PMX commands, and a few programming tricks, including examples in the last line of beam groups whose notes vary widely in pitch. The printed output displays the PMX commands near to the resulting typeset characters. It is more useful to look at the printed output rather than the source file, since the file is littered with in-line \TeX needed to output the text strings representing the PMX commands. WARNING: Do not try to play this music; it could be hazardous.

barsant.pmx contains the first movement of a recorder sonata by the Italian Francesco Barsanti (1690-1772). It demonstrates many of PMX's strong points in a "battlefield" situation: figured bass, complex beaming patterns, xtuplets, and automatically adjusted horizontal and vertical spacing in crowded scores. In fact, this single-page score is at the limit of vertical crowding. To get the final result, it uses the option ae for equal space between systems, and the space between systems was increased (Af1.1) from the default. This is a good score to try making parts with scor2prt. A special command \%2S9 is used to increase the number of systems in the recorder part.

mvalmnd.pmx is an Allemand for harpsichord by the German Matthias Weckmann (1616-1674). It uses many techniques peculiar to keyboard scores, most notably two lines of music per staff.

A Benign Bug

When \TeX'ing the output of PMX you will usually get an Underfull \vbox message at the end of each page. This is due to my using \eject at the end of every page, which automatically spaces the systems vertically without having to fiddle with \staffbotmarg. As far as I know, the warning is benign, and may be ignored.

Where to Get PMX

The main home of PMX on the internet is the software section of the Icking Music Archive, at http://icking-music-archive.sunsite.dk. The PMX distributions on this server are mirrored on the CTAN sites at www.ctan.org, ftp.tex.ac.uk, and ftp.dante.de.

PMX is coded in FORTRAN and developed in a DOS/Windows environment. The basic distribution will contain the FORTRAN source and DOS/Windows binary (i.e., it runs in a DOS window, but some flavor of Windows must be present). Users of other OS's have several options. They may compile the original source if they have access to a compiler, or they may check the archive for other distributions. The most recent available versions for Linux, Unix, and Mac will be posted in the archive, but as of this writing they are all out of date. New versions will be posted when and if volunteers provide them.

Most of the supporting software mentioned here is either available on or linked to from the Icking Music Archive. This includes MusiXT\TeX itself, Dirk Laurie's lyrics pre-preprocessor M-Tx, and packages for both type K and type M postscript slurs.

Acknowledgments

To Daniel Taupin, Ross Mitchell, and Andreas Egler for creating MusiXT\TeX, to Olivier Clary for suggesting a crucial modification in the note-entry scheme, to my colleague John DiPol (a non-musician!) for the idea of using binary masks to define beam groupings, to Eric Petersen and Stephan Evert past help in porting PMX to other platforms, to Joel Hunsberger for unravelling some deep MusiXT\TeX tangles, to Dirk Laurie for making PMX accessible to vocal music by creating M-Tx, to Stanislav Kneifl and Hiroaki Morimoto for developing the postscript slur packages, and to Christian Mondrup, Andre Van Ryckeghem, Christof Biebricher, Joerg Anders, and other denizens
of the TeX-music mailing list for first-class bug-finding. Finally, I want to mention again the invaluable contributions by Werner Icking: his exhaustive beta testing, uncanny bug-finding, continuing encouragement, and promotion of PMX right up until his sudden and premature departure from this earthly realm.